Abstract

A fundamental milestone in the development of a low NOx burner technology is the demonstration of its capabilities in realistic environment. This is especially true for the novel burner subject of this paper, which has been extensively characterized throughout single burner scale experiments. An exhaustive description of the early development phases of the novel burner has been provided by authors in recently published works. The most promising geometry was selected for the assessment in real combustor arrangement, consisting of a full-scale annular combustor test rig. This paper reports the main results of such an assessment. Pollutant emissions and pressure pulsations have been measured at gas turbine relevant operating conditions. Moreover, dedicated blow-out tests have been performed to obtain the extinction equivalence ratio at both ambient and pressurized conditions, as done during the past single burner rig campaign. Basically, an adequate set of data has been gathered, allowing a direct comparison between full-annular and reduced-scale tests. A general alignment of behavior has been observed, as both low NOx capability and blow-out characteristics of full-annular arrangement turned out to be substantially unchanged with respect to the single burner. Nevertheless, some discrepancies in magnitude have been highlighted and discussed. Details have been given involving deeper numerical analysis by means of a dedicated model developed by the authors in previous works. Indeed, improvement to the model has been introduced in the context of this paper to overcome some limitations arisen in predicting emissions. Finally, a preliminary stability analysis has been carried out, with the aim to describe the onset of thermoacoustic instability tendency as observed in the full-annular tests.

References

1.
Environmental Protection Agency,
2019
, “
National Emission Standards for Hazardous Air Pollutants: Stationary Combustion Turbines Residual Risk and Technology Review
,”
Fed. Reg.
,
84
(
71
), pp.
15046
15077
.https://www.federalregister.gov/documents/2019/04/12/2019-07024/national-emission-standards-for-hazardous-air-pollutants-stationary-combustion-turbines-residual
2.
Karim
,
H.
,
Natarajan
,
J.
,
Narra
,
V.
,
Cai
,
J.
,
Rao
,
S.
,
Kegley
,
J.
, and
Citeno
,
J.
,
2017
, “
Staged Combustion System for Improved Emissions Operability and Flexibility for 7HA Class Heavy Duty Gas Turbine Engine
,”
ASME
Paper No. GT2017-63998.10.1115/GT2017-63998
3.
Yamada
,
H.
,
Tagaci
,
H.
, and
Hayashi
,
S.
,
2005
, “
Low-NOx Emissions Over an Enlarged Range of Overall Equivalence Ratios by Staged Lean Premixed Tubular Flame Combustion
,”
ASME
Paper No. GT2005-68849.10.1115/GT2005-68849
4.
Winkler
,
D.
,
Geng
,
W.
,
Engelbrecht
,
G.
,
Stuber
,
P.
,
Knapp
,
K.
, and
Griffin
,
T.
,
2017
, “
Staged Combustion Concept for Gas Turbines
,”
J. Global Power Propul. Soc.
,
1
, p.
CVLCX0
.10.22261/CVLCX0
5.
Bothien
,
M. R.
,
Ciani
,
A.
,
Wood
,
P.
, and
Fruechtel
,
G.
,
2019
, “
Sequential Combustion in Gas Turbines: The Key Technology for Burning High Hydrogen Contents With Low Emissions
,”
ASME
Paper No. GT2019–90798.10.1115/GT2019-90798
6.
Carrera
,
A.
,
Andersson
,
M.
, and
Nasvall
,
H.
,
2011
, “
Experimental Investigation of the 4th Generation DLE Burner Concept: Emissions and Fuel Flexibility Performance at Atmospheric Conditions
,”
ASME
Paper No. GT2011–46387.10.1115/GT2011-46387
7.
Cerutti
,
M.
,
Riccio
,
G.
,
Andreini
,
A.
,
Becchi
,
R.
,
Facchini
,
B.
, and
Picchi
,
A.
,
2019
, “
Experimental and Numerical Investigations of Novel Natural Gas Low NOx Burners for Heavy Duty Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021106
.10.1115/1.4040814
8.
Cerutti
,
M.
,
Roma
,
M.
,
Picchi
,
A.
,
Becchi
,
R.
, and
Facchini
,
B.
,
2019
, “
Improving Emission and Blow-Out Characteristics of Novel Natural Gas Low NOx Burners for Heavy Duty Gas Turbine
,”
ASME
Paper No. GT2018–91235.10.1115/GT2018-91235
9.
Pampaloni
,
D.
,
Nassini
,
P.
,
Andreini
,
A.
,
Facchini
,
B.
, and
Cerutti
,
M.
,
2020
, “
Numerical Investigations of Pollutant Emissions From Novel Heavy Duty Gas Turbine Burners Operated With Natural Gas
,”
ASME J. Eng. Gas Turbines Power
,
142
(
3
), p. 031025.10.1115/1.4045101
10.
Andrews
,
E. G.
, and
Ahmad
,
N. T.
,
2012
, “
Axial Swirler Outlet Shroud Influence on Premixed Combustion NOx Emissions for All the Combustion Airflow Passing Through the Swirler
,”
ASME
Paper No. GT2012–68642.10.1115/GT2012-68642
11.
Andrews
,
G. E.
,
Escott
,
N.
, and
Mkpadi
,
M. C.
,
2008
, “
Radial Swirler Designs for Ultra-Low NOx Gas Turbine Combustion
,”
ASME
Paper No. GT2008–50406.10.1115/GT2008-50406
12.
Cerutti
,
M.
,
Modi
,
R.
,
Kalitan
,
D.
, and
Kapil
,
S.
,
2015
, “
Design Improvement Survey for NOx Emissions Reduction of a Heavy-Duty Gas Turbine Partially Premixed Fuel Nozzle Operating With Natural Gas: Experimental Campaign
,”
ASME
Paper No. GT2015–43516.10.1115/GT2015-43516
13.
Cerutti
,
M.
,
Giannini
,
N.
,
Ceccherini
,
G.
,
Meloni
,
R.
,
Matoni
,
E.
,
Romano
,
C.
, and
Riccio
,
G.
,
2018
, “
Dry Low NOx Emissions Operability Enhancement of a Heavy-Duty Gas Turbine by Means of Fuel Burner Design Development and Testing
,”
ASME
Paper No. GT2018–76587.10.1115/GT2018-76587
14.
Romano
,
S.
,
Cerutti
,
M.
,
Riccio
,
G.
,
Romano
,
C.
, and
Andreini
,
A.
,
2019
, “
Effect of Natural Gas Composition on Low NOx Burners Operation in Heavy Duty Gas Turbine
,”
ASME
Paper No. GT2019–90903.10.1115/GT2019-90903
15.
Lindman
,
O.
,
Andersson
,
M.
,
Bonaldo
,
A.
,
Larsson
,
A.
, and
Janczewski
,
J.
,
2017
, “
SGT-750 Fuel Flexibility: Engine and Rig Tests
,”
ASME
Paper No. GT2017-63412.10.1115/GT2017-63412
16.
M.
,
Andersson
,
A.
,
Larsson
,
A.
,
Lindholm
, and
L.
,
Jenny
,
2012
, “
Extended Fuel Flexibility Testing of Siemens Industrial Gas Turbines: A Novel Approach
,”
ASME
Paper No. GT2012–69027.10.1115/GT2012-69027
17.
Bonaldo
,
A.
,
Andersson
,
M.
, and
Larsson
,
A.
,
2014
, “
Engine Testing Using Highly Reactive Fuels on Siemens Industrial Gas Turbines
,”
ASME
Paper No. GT2014–26023.10.1115/GT2014-26023
18.
Bothien
,
M. R.
,
Moeck
,
J. P.
, and
Paschereit
,
C. O.
,
2008
, “
Active Control of the Acoustic Boundary Conditions of Combustion Test Rigs
,”
J. Sound Vib.
,
318
(
4–5
), pp.
678
701
.10.1016/j.jsv.2008.04.046
19.
Cerutti
,
M.
,
Giannini
,
N.
,
Schuermans
,
B.
,
Brenci
,
R.
,
Marini
,
A.
,
Ceccherini
,
G.
, and
Riccio
,
G.
,
2019
, “
Combustion Instabilities Damping System Development for Dry Low NOx Emissions Operability Enhancement of a Heavy-Duty Gas Turbine
,”
ASME
Paper No. GT2019–91246.10.1115/GT2019-91246
20.
BalestriCecchini
,
M. D.
, and
Cinti
,
V.
,
2004
, “
Unconventional Fuels Experimental Campaigns in Gas Turbine Combustos at ENEL Sesta Facility
,”
ASME
Paper No. GT2004–53274.10.1115/GT2004-53274
21.
Cosvig
, 2020, “
Sesta Lab Plant Capabilities
,” Sesta Lab, Radicondoli, Italy, accessed Dec. 31, 2020, https://www.sestalab.com/site/index.php/en/plant-capability
22.
Correa
,
S. M.
,
1993
, “
A Review of NOx Formation Under Gas-Turbine Combustion
,”
Combust. Sci. Technol.
,
87
(
1–6
), pp.
329
362
.10.1080/00102209208947221
23.
Steele
,
R. C.
,
Tonouchi
,
J. H.
,
Nicol
,
D. G.
,
Horning
,
D. C.
,
Malte
,
P. C.
, and
Pratt
,
D. T.
,
1998
, “
Characterization of NOx, N20, and CO for Lean-Premixed Combustion in a High-Pressure Jet-Stirred Reactor
,”
J. Eng. Gas Turbines Power
,
120
(
2
), pp.
303
310
.10.1115/1.2818121
24.
Pampaloni
,
D.
,
Nassini
,
P. C.
,
Paccati
,
S.
,
Palanti
,
L.
,
Andreini
,
A.
,
Facchini
,
B.
,
Cerutti
,
M.
, and
Riccio
,
G.
,
2018
, “
Numerical Predictions of Pollutant Emissions of Novel Natural Gas Low NOx Burners for Heavy Duty Gas Turbine
,”
AIAA
Paper No. 2018-4562.10.2514/6.2018-4562
25.
Ansys Inc.
,
2019
, Fluent Theory Guide, Ansys Inc., Canonsburg, PA.
26.
Chong
,
L. T. W.
,
Bomberg
,
S.
,
Ulhaq
,
A.
,
Komarek
,
T.
, and
Polifke
,
W.
,
2012
, “
Comparative Validation Study on Identification of Premixed Flame Transfer Function
,”
ASME J. Eng. Gas Turbine Power
,
134
(
2
), p.
021502
.10.1115/1.4004183
27.
Chong
,
L. T. W.
,
Komarek
,
T.
,
Kaess
,
R.
,
Foller
,
S.
, and
Polifke
,
W.
,
2010
, “
Identification of Flame Transfer Functions From LES of a Premixed Swirl Burner
,”
ASME
Paper No. GT2010-22769.10.1115/GT2010-22769
28.
Campa
,
G.
,
Camporeale
,
S. M.
,
Cosatto
,
E.
, and
Mori
,
G.
,
2012
, “
Thermoacoustic Analysis of Combustion Instability Through a Distributed Flame Response Function
,”
ASME
Paper No. GT2012-68243.10.1115/GT2012-68243
29.
InnocentiAndreini
,
A.
,
Facchini
,
A. B.
, and
Cerutti
,
M.
,
2016
, “
Numerical Analysis of the Dynamic Flame Response and Thermo-Acoustic Stability of a Full-Annular Lean Partially-Premixed Combustor
,”
ASME
Paper No. GT2016-57182.10.1115/GT2016-57182
30.
Campa
,
G.
, and
Camporeale
,
S. M.
,
2014
, “
Prediction of the Thermoacoustic Combustion Instabilities in Practical Annular Combustors
,”
ASME J. Eng. Gas Turbine Power
,
136
(
9
), p.
91504
.10.1115/1.4027067
31.
Mensah
,
G. A.
,
Campa
,
G.
, and
Moeck
,
J. P.
,
2016
, “
Efficient Computation of Thermoacoustic Modes in Industrial Annular Combustion Chambers Based on Bloch-Wave Theory
,”
ASME J. Eng. Gas Turbines Power
,
138
(
8
), p. 081502.10.1115/1.4032335
You do not currently have access to this content.