Abstract

Compressor response investigation in nearly unstable operating conditions, like rotating stall and incipient surge, is a challenging topic nowadays in the turbomachinery research field. Indeed, turbines connected with large-size volumes are affected by critical issues related to surge prevention, particularly during transient operations. Advanced signal-processing operations conducted on vibrational responses provide an insight into possible diagnostic and predictive solutions which can be derived from accelerometer measurements. Indeed, vibrational investigation is largely employed in rotating-machine diagnostics together with time-frequency analysis such as smoothed pseudo-Wigner Ville (SPWVD) time-frequency distribution (TFD) considered in this paper. It is characterized by excellent time and frequency resolutions and thus it is effectively employed in numerous applications in the condition monitoring of machinery. The aim and the innovation of this work regards SPWVD utilization to study turbomachinery behavior in detail in order to identify incipient surge conditions in the centrifugal compressor starting from operational vibrational responses measured at significant plant locations. The so developed investigation allows us to assess the reliability of this innovative technique with respect to conventional ones in this field of research, highlighting at the same time its qualities and drawbacks in detecting fluid machinery unstable behavior. To this aim, an experimental campaign has been conducted on a T100 microturbine connected with several volume sizes and this has allowed to assess diagnostic technique reliability in plant configurations with different dynamic properties. The results show that SPWVD is able to successfully identify system evolution toward an unstable condition, by recognizing different levels and features of the particular kind of instability that is going to take place within the plant. Instability phenomena regarding rolling bearings have also been identified and their interaction with surge onset has been investigated for diagnostic purposes.

References

1.
Sheikhbeigi
,
B.
, and
Ghofrani
,
M. B.
,
2007
, “
Thermodynamic and Environmental Consideration of Advanced Gas Turbine Cycles With Reheat and Recuperator
,”
Int. J. Environ. Sci. Technol.
,
4
(
2
), pp.
253
262
.10.1007/BF03326282
2.
Locatelli
,
M.
,
1990
, “
Contribution of Gas Turbines to Energy Savings With High Efficiency Systems
,”
Appl. Energy
,
36
(
1–2
), pp.
89
92
.10.1016/0306-2619(90)90092-R
3.
Traverso
,
A.
, and
Massardo
,
A. F.
,
2002
, “
Thermoeconomic Analysis of Mixed Gas-Steam Cycles
,”
Appl. Therm. Eng.
,
22
(
1
), pp.
1
21
.10.1016/S1359-4311(01)00064-3
4.
Jana
,
K.
,
Ray
,
A.
,
Majoumerd
,
M. M.
,
Assadi
,
M.
, and
De
,
S.
,
2017
, “
Polygeneration as a Future Sustainable Energy Solution – a Comprehensive Review
,”
Appl. Energy
,
202
, pp.
88
111
.10.1016/j.apenergy.2017.05.129
5.
Yan
,
J.
,
Chou
,
S. K.
,
Desideri
,
U.
, and
Xia
,
X.
,
2014
, “
Innovative and Sustainable Solutions of Clean Energy Technologies and Policies (Part I)
,”
Appl. Energy
,
130
, pp.
447
449
.10.1016/j.apenergy.2014.05.052
6.
McDonald
,
C. F.
,
Massardo
,
A. F.
,
Rodgers
,
C.
, and
Stone
,
A.
,
2008
, “
Recuperated Gas Turbine Aeroengines, Part I: Early Development Activities
,”
Aircr. Eng. Aerosp. Technol.
,
80
(
2
), pp.
139
157
.10.1108/00022660810859364
7.
Al-Sharafi
,
A.
,
Yilbas
,
B. S.
,
Sahin
,
A. Z.
, and
Ayar
,
T.
,
2017
, “
Performance Assessment of Hybrid Power Generation Systems: Economic and Environmental Impacts
,”
Energy Convers. Manage.
,
132
, pp.
418
431
.10.1016/j.enconman.2016.11.047
8.
Henke
,
M.
,
Monz
,
T.
, and
Aigner
,
M.
,
2017
, “
Introduction of a New Numerical Simulation Tool to Analyze Micro Gas Turbine Cycle Dynamics
,”
ASME J. Eng. Gas Turbine Power
,
139
(
4
), p.
042601
.10.1115/1.4034703
9.
Qiu
,
K.
,
Yan
,
L.
,
Ni
,
M.
,
Wang
,
C.
,
Xiao
,
G.
,
Luo
,
Z.
, and
Cen
,
K.
,
2015
, “
Simulation and Experimental Study of an Air Tubecavity Solar Receiver
,”
Energy Convers. Manage.
,
103
, pp.
847
858
.10.1016/j.enconman.2015.07.013
10.
Montero Carrero
,
M.
,
De Paepe
,
W.
,
Parente
,
A.
, and
Contino
,
F.
,
2016
, “
T100 mGT Converted Into mHAT for Domestic Applications: Economic Analysis Based on Hourly Demand
,”
Appl. Energy
,
164
, pp.
1019
1027
.10.1016/j.apenergy.2015.03.032
11.
Pedemonte
,
A. A.
,
Traverso
,
A.
, and
Massardo
,
A. F.
,
2008
, “
Experimental Analysis of Pressurized Humidification Tower for Humid Air Gas Turbine Cycles. Part A: Experimental Campaign
,”
Appl. Therm. Eng.
,
28
(
14–15
), pp.
1711
1725
.10.1016/j.applthermaleng.2007.10.030
12.
Zaccaria
,
V.
,
Tucker
,
D.
, and
Traverso
,
A.
,
2016
, “
Transfer Function Development for SOFC/GT Hybrid Systems Control Using Cold Air Bypass
,”
Appl. Energy
,
165
, pp.
695
706
.10.1016/j.apenergy.2015.12.094
13.
McLarty
,
D.
,
Brouwer
,
J.
, and
Samuelsen
,
S.
,
2014
, “
Fuel Cell-Gas Turbine Hybrid System Design Part II: Dynamics and Control
,”
J. Power Sources
,
254
, pp.
126
136
.10.1016/j.jpowsour.2013.11.123
14.
Lis¨Kiewicz
,
G.
, and
Horodko
,
L.
,
2015
, “
Time-Frequency Analysis of the Surge Onset in the Centrifugal Blower
,”
Open Eng.
,
5
(
1
), pp.
299
306
.10.1515/eng-2015-0040
15.
Zaccaria
,
V.
,
Tucker
,
D.
, and
Traverso
,
A.
,
2017
, “
Operating Strategies to Minimize Degradation in Fuel Cell Gas Turbine Hybrids
,”
Appl. Energy
,
192
, pp.
437
445
.10.1016/j.apenergy.2016.10.098
16.
Fanyu
,
L.
, and
Jun
,
L.
, “
Stall Warning Approach With Application to Stall Precursor-Suppressed Casing Treatment
,”
ASME
Paper No. GT2016-58172.10.1115/GT2016-58172
17.
Morini
,
M.
,
Pinelli
,
M.
, and
Venturini
,
M.
,
2007
, “
Acoustic and Vibrational Analyses on a Multi-Stage Compressor for Unstable Behavior Precursor Identification
,”
ASME
Paper No. GT2007-27040.10.1115/GT2007-27040
18.
Ferrari
,
M. L.
,
Silvestri
,
P.
,
Pascenti
,
M.
,
Reggio
,
F.
, and
Massardo
,
A. F.
,
2017
, “
Experimental Dynamic Analysis on a T100 Microturbine Connected With Different Volume Sizes
,”
ASME
Paper No. GT2017-63579.10.1115/GT2017-63579
19.
Caratozzolo
,
F.
,
Ferrari
,
M. L.
,
Traverso
,
A.
, and
Massardo
,
A. F.
,
2013
, “
Emulator Rig for SOFC Hybrid Systems: Temperature and Power Control With a Real-Time Software
,”
Fuel Cells
,
13
(
6
), pp.
1123
1130
.10.1002/fuce.201200229
20.
Niccolini Marmont Du Haut Champ
,
C. A.
,
Massardo
,
A. F.
,
Ferrari
,
M. L.
, and
Silvestri
,
P.
,
2019
, “
Surge Prevention in Gas Turbines: An Overview Over Historical Solutions and Perspectives About the Future (2019) E3S Web of Conferences
,” Vol.
113
, Savona, Italy, Sept. 4–6, Paper No.
02003
.10.1051/e3sconf/201911302003
21.
Antoni
,
J.
,
2009
, “
Cyclostationarity by Examples
,”
Mech. Syst. Signal. Process.
,
23
(
4
), pp.
987
1036
.10.1016/j.ymssp.2008.10.010
22.
Antoni
,
J.
,
2007
, “
Cyclic Spectral Analysis in Practice
,”
Mech. Syst. Signal. Process.
,
21
(
2
), pp.
597
630
.10.1016/j.ymssp.2006.08.007
23.
Forrester
,
B. D.
,
1989
, “
Use of the Wigner-Ville Distribution in Helicopter Transmission Fault Detection
,”
Proceedings of the Australian Symposium on Signal Processing and Applications, ASSPA-89
, Adelaide, Australia, April 17–19.
24.
Forrester
,
B. D.
,
1989
, “
Analysis of Gear Vibration in the Time-Frequency Domain
,”
Proceedings of the 44th Meeting of the Mechanical Failures Prevention Group of the Vibration Institute
, Virginia Beach, VA, Apr. 3–5, pp.
225
234
.
25.
Forrester
,
B. D.
,
1990
, “
Time-Frequency Analysis of Helicopter Transmission Vibration
,” Aeronautical Research Laboratory, ARL Propulsion, Melbourne, Report No. 180.
26.
Forrester
,
B. D.
,
1992
,
Time-Frequency Analysis in Machine Fault Detection
.
Time-Frequency Signal Analysis
,
B.
Boasahsh
(ed.),
Longman Cheshire
,
Melbourne, Australia
.
27.
Baydar
,
N.
, and
Ball
,
A.
,
2001
, “
A Comparative Study of Acoustic and Vibration Signals in Detection of Gear Failures Using Wigner-Ville Distribution
,”
Mech. Syst. Signal. Process.
,
15
(
6
), pp.
1091
1107
.10.1006/mssp.2000.1338
28.
Niccolini Marmont Du Haut Champ
,
C. A.
,
Silvestri
,
P.
,
Ferrari
,
M. L.
, and
Massardo
,
A. F.
,
2020
, “
Signal Processing Techniques to Detect Centrifugal Compressors Instabilities in Large Volume Power Plants
,”
ASME J. Eng. Gas Turbines Power
,
142
(
12
), p.
121002
.10.1115/1.4048910
29.
Allen
,
J. B.
,
1977
, “
Short-Time Spectral Analysis, Synthesis and Modification by Discrete Fourier Transform
,”
IEEE Trans. ASSP
,
25
(
3
), pp.
235
38
.10.1109/TASSP.1977.1162950
30.
Gabor
,
D.
,
1946
, “
Theory of Communication
,”
J. IEE
,
93
(
26
), pp.
429
59
.10.1049/ji-3-2.1946.0074
31.
Mallat
,
S.
, July
1989
, “
A Theory for Multi-Resolution Signal Representation: The Wavelet Transform
,”
IEEE Trans. PAMI
,
11
(
7
), pp.
674
93
.10.1109/34.192463
32.
Rangoussi
,
M.
, and
Giannakis
,
G. B.
,
1991
, “
FIR Modeling Using Log-Bispectra: Weighted Least-Squares Algorithms and Performance Analysis
,”
IEEE Trans. Circ. Syst.
,
38
(
3
), pp.
281
96
.10.1109/31.101321
33.
Cohen
,
L.
,
1989
, “
Time-Frequency Distributions: A Review
,”
Proc. IEEE
, 77(7), pp.
941
–9
81
.10.1109/5.30749
34.
Hlawatsch
,
F.
, and
Boudreaux-Bartels
,
G. F.
,
1992
, “
Linear and Quadratic Time-Frequency Representations
,”
IEEE Signal Process. Mag.
,
9
(
2
), pp.
21
67
.10.1109/79.127284
35.
Boudreaux-Bartels
,
G.
,
1984
, “
Time-Frequency Signal Processing Algorithms: Analysis and Synthesis Using Wigner Distributions
,”
Ph.D. dissertation
,
Rice University
,
Houston, TX
.https://scholarship.rice.edu/handle/1911/15805
36.
Gerr
,
N. L.
,
1988
, “
Introducing a Third-Order Wigner Distribution
,”
Proc. IEEE
,
76
(
3
), pp.
290
–2
92
.10.1109/5.4410
37.
Fonollosa
,
J. R.
, and
Nikias
,
C. L.
,
1993
, “
Wigner Higher-Order Moment Spectra: Definitions, Properties, Computation and Applications to Transient Signal Detection
,”
IEEE Trans. Signal Process.
,
41
, pp.
245
266
.10.1109/TSP.1993.193143
38.
Fonollosa
,
J. R.
, and
Nikias
,
C. L.
,
1994
, “
Analysis of Finite-Energy Signals Using Higher-Order Moments- and Spectra-Based Time-Frequency Distributions
,”
Signal Process.
,
36
(
3
), pp.
315
328
.10.1016/0165-1684(94)90030-2
39.
Swami
,
A.
,
1988
, “
System Identification Using Cumulants
,” Ph.D. dissertation,
University of Southern California
,
Los Angeles, CA
, pp.
107
108
.
40.
Swami
,
A.
,
1992
, “
Higher-Order Wigner Distributions
,”
Proc. SPIE-92, Session on Higher-Order and Time-Varying Spectral Analysis
, Vol. $
1770
, San Diego, CA, July 19–24, pp.
290
301
.
41.
Swami
,
A.
, May
1991
, “
Third-Order Wigner Distributions
,”
Proc. ICASSP-91
, Toronto, ON, Canada, pp.
3081
3084
.
42.
Classen
,
T. A. C. M.
, and
Mecklenbraüker
,
W. F. G.
,
1980
, “
The Wigner Distribution —a Tool for Time-Frequency Signal Analysis
,”
Phillips J. Res
,
35
(4/5), pp.
217
250
, 276–300, 372–389,
1067
1072
.https://www.researchgate.net/publication/257291758_The_Wigner_distribution-A_tool_for_time-frequency_signal_analysis-Part_II_Discrete_time_signals
43.
Classen
,
T. A. C. M.
, and
Mecklenbraüker
,
W. F. G.
,
1983
, “
The Aliasing Problem in Discrete-Time Wigner Distributions
,”
IEEE Trans ASSP
, 31(5), pp.
1067
1072
. 10.1109/TASSP.1983.1164212
44.
Choi
,
H.
, and
Williams
,
W. J.
,
1989
, “
Improved Time-Frequency Representation of Multicomponent Signals Using Exponential Kernels
,”
IEEE Trans. ASSP
,
37
(
6
), pp.
862
871
.10.1109/ASSP.1989.28057
45.
Perryin
,
F.
, and
Frost
,
R.
,
1986
, “
A Unified Definition for the Discrete-Time, Discrete-Frequency, and Discrete Time/Frequency Wigner Distributions
,”
IEEE Trans. ASSP
,
34
, pp.
858
867
.10.1109/TASSP.1986.1164880
46.
Ferrari
,
M. L.
,
Silvestri
,
P.
,
Pascenti
,
M.
,
Reggio
,
F.
, and
Massardo
,
A. F.
,
2018
, “
Experimental Dynamic Analysis on a T100 Microturbine Connected With Different Volume Sizes
,”
ASME J. Eng. Gas Turbines Power
,
140
(
2
), pp.
021701_1
12
.10.1115/1.4037754
47.
Harris
,
C. M.
, and
Piersol
,
A. G.
,
2002
,
Harris' Shock and Vibration Handbook
,
McGraw-Hill
,
New York
.
48.
Vance
,
J. M.
,
1988
,
Rotordynamics of Turbomachinery
,
Wiley-Interscience
,
Hoboken, NJ
.
49.
Reggio
,
F.
,
Ferrari
,
M. L.
,
Silvestri
,
P.
, and
Massardo
,
A. F.
,
2019
, “
Vibrational Analysis for Surge Precursor Definition in Gas Turbines
,”
Meccanica
,
54
(
8
), pp.
1257
1278
.10.1007/s11012-019-01016-0
50.
Ferrari
,
M. L.
,
Silvestri
,
P.
,
Reggio
,
F.
, and
Massardo
,
A. F.
,
2018
, “
Surge Prevention for Gas Turbines Connected With Large Volume Size: Experimental Demonstration With a Microturbine
,”
Appl. Energy
,
230
, pp.
1057
1064
.10.1016/j.apenergy.2018.09.075
51.
Ye
,
Z.
, and
Wang
,
L.
,
2015
, “
Effect of External Loads on Cage Stability of High-Speedball Bearings
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
229
, pp.
1300
1318
.10.1177/1350650115577402
52.
Niu
,
L.
,
Cao
,
H.
,
He
,
Z.
, and
Li
,
Y.
,
2016
, “
An Investigation on the Occurrence of Stable Cage Whirl Motions in Ball Bearings Based on Dynamic Simulations
,”
Tribol. Int.
, 103, pp.
12
24
.10.1016/j.triboint.2016.06.026
53.
Han
,
C.-F.
,
Chang
,
C.-S.
,
Wu
,
C.-J.
,
Chu
,
H.-Y.
,
Horng
,
J.-H.
,
Wei
,
C.-C.
, and
Lin
,
J.-F.
,
2020
, “
Determinations of Thermoelastic Instability for Ball-Bearing-Like Specimens With Spacers and in Grease Lubrications
,”
Tribol. Int.
,
151
, p.
106415
.10.1016/j.triboint.2020.106415
54.
Gupta
,
P. K.
,
1988
, “
Frictional Instabilities in Ball Bearings
,”
Tribol Trans
,
31
(
2
), pp.
258
68
.10.1080/10402008808981821
55.
Bianchini
,
A.
,
Biliotti
,
D.
,
Giachi
,
M.
,
Belardini
,
E.
,
Tapinassi
,
L.
,
Ferrari
,
L.
, and
Ferrara
,
G.
,
2014
, “
Some Guidelines for the Experimental Characterization of Vaneless Diffuser Rotating Stall in Stages of Industrial Centrifugal Compressors
,”
ASME
Paper No. GT2014-26401.10.1115/GT2014-26401
56.
Bianchini
,
A.
,
Biliotti
,
D.
,
Tommaso Rubino
,
D.
,
Ferrari
,
L.
, and
Ferrara
,
G.
,
2015
, “
Experimental Analysis of the Pressure Field Inside a Vaneless Diffuser From Rotating Stall Inception to Surge
,”
ASME J. Turbomach.
,
137
(
11
), p.
111007
.10.1115/1.4031354
57.
Niccolini Marmont Du Haut Champ
,
C. A.
,
Ferrari
,
M. L.
,
Silvestri
,
P.
, and
Massardo
,
A. F.
,
2020
, “
Signal Processing Techniques to Detect Centrifugal Compressors Instabilities in Large Volume Power Plants
,”
ASME
Paper No. GT2020-14795.10.1115/GT2020-14795
You do not currently have access to this content.