Abstract

Heavy fuel oil (HFO) is an economical fuel alternative for power generation as its low production cost and high energy density. However, its incomplete combustion induced by the presence of long-chain petroleum molecules in the fuel results in high levels of emissions. Here, we investigate the influence of the swirl flow on the combustion and emissions of a spray HFO swirling flame. To this end, HFO is sprayed into a hot swirling air, using an air-blast nozzle. The flame blowout limits are tested under different swirl flows. An investigation of the in-flame temperature fields, gaseous emissions including CO, CO2, O2, NOx, SOx, UHC (Unburned Hydrocarbon) and solid particles in the form of cenospheres are used to quantify the performance of the HFO combustion. The influence of the HFO swirling flame is tested under different conditions of global equivalence ratio, swirling number, and tangential and axial airflow rates. A comparison of two different flame regimes that fuel-jet dominate flame and air-driven vortex flows are investigated and compared in various swirling flow conditions. The results show that the tangent air is the primary factor for preheating and evaporating the fuel, thus defining the flame operating regimes.

References

1.
Sun
,
Z.
,
2019
, “
International Regulation of Heavy Fuel Oil Use by Vessels in Arctic Waters
,”
Int. J. Mar. Coastal Law
,
34
(
3
), pp.
513
536
.10.1163/15718085-13431095
2.
Czernik
,
S.
, and
Bridgwater
,
A. V.
,
2004
, “
Overview of Applications of Biomass Fast Pyrolysis Oil
,”
Energy Fuels
,
18
(
2
), pp.
590
598
.10.1021/ef034067u
3.
Ballester
,
J. M.
,
Fueyo
,
N.
, and
Dopazo
,
C.
,
1996
, “
Combustion Characteristics of Heavy Oil-Water Emulsions
,”
Fuel
,
75
(
6
), pp.
695
705
.10.1016/0016-2361(95)00309-6
4.
Bartle
,
K. D.
,
Jones
,
J. M.
,
Lea-Langton
,
A. R.
,
Pourkashanian
,
M.
,
Ross
,
A. B.
,
Thillaimuthu
,
J. S.
,
Waller
,
P. R.
, and
Williams
,
A.
,
2013
, “
The Combustion of Droplets of High-Asphaltene Heavy Oils
,”
Fuel
,
103
, pp.
835
842
.10.1016/j.fuel.2012.07.004
5.
Villasenor
,
R.
, and
Garcia
,
F.
,
1999
, “
An Experimental Study of the Effects of Asphaltenes on Heavy Fuel Oil Droplet Combustion
,”
Fuel
,
78
(
8
), pp.
933
944
.10.1016/S0016-2361(99)00010-1
6.
Urban
,
D. L.
, and
Dryer
,
F. L.
,
1991
, “
New Results on Coke Formation in the Combustion of Heavy-Fuel Droplets
,”
Pro. Combust. Inst.
,
23
(
1
), pp.
1437
1443
.10.1016/S0082-0784(06)80411-X
7.
Ikegami
,
M.
,
Xu
,
G.
,
Ikeda
,
K.
,
Honma
,
S.
,
Nagaishi
,
H.
,
Dietrich
,
D. L.
, and
Takeshita
,
Y.
,
2003
, “
Distinctive Combustion Stages of Single Heavy Oil Droplet Under Microgravity
,”
Fuel
,
82
(
3
), pp.
293
304
.10.1016/S0016-2361(02)00257-0
8.
Weigand
,
P.
,
Meier
,
W.
,
Duan
,
X. R.
,
Stricker
,
W.
, and
Aigner
,
M.
,
2006
, “
Investigations of Swirl Flames in a Gas Turbine Model Combustor: I. Flow Field, Structures, Temperature, and Species Distributions
,”
Combust. Flame
,
144
(
1–2
), pp.
205
224
.10.1016/j.combustflame.2005.07.010
9.
Bharathi
,
V. P.
, and
Prasanthi
,
S. G.
,
2012
, “
Experimental Investigation on the Effect of Air Swirl on Performance and Emissions Characteristics of a Diesel Engine Fueled With Karanja Biodiesel
,”
Int. J. Eng. Res. Develop.
,
2
(
8
), pp.
8
13
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.299.9744&rep=rep1&type=pdf
10.
Benajes
,
J.
,
Molina
,
S.
,
García
,
J. M.
, and
Riesco
,
J. M.
,
2004
, “
The Effect of Swirl on Combustion and Exhaust Emissions in Heavy-Duty Diesel Engines
,”
Proc. Inst. Mech. Eng., Part D: J. Automobile Eng.
,
218
(
10
), pp.
1141
1148
.10.1177/095440700421801009
11.
Huang
,
W. C.
,
Hou
,
S. S.
, and
Lin
,
T. H.
,
2017
, “
Combustion Characteristics of a 300kWth Oil-Fired Furnace Using Castor Oil/Diesel Blended Fuels
,”
Fuel
,
208
, pp.
71
81
.10.1016/j.fuel.2017.07.007
12.
Elbaz
,
A. M.
, and
Roberts
,
W. L.
,
2016
, “
Investigation of the Effects of Quarl and Initial Conditions on Swirling Non-Premixed Methane Flames: Flow Field, Temperature, and Species Distributions
,”
Fuel
,
169
, pp.
120
134
.10.1016/j.fuel.2015.12.015
13.
Boushaki
,
T.
,
Merlo
,
N.
,
Chauveau
,
C.
, and
Gökalp
,
I.
,
2017
, “
Study of Pollutant Emissions and Dynamics of Non-Premixed Turbulent Oxygen Enriched Flames From a Swirl Burner
,”
Pro. Combust. Inst.
,
36
(
3
), pp.
3959
3968
.10.1016/j.proci.2016.06.046
14.
Shi
,
B.
,
Cao
,
Q.
,
Xie
,
D.
,
Peng
,
W.
, and
Wang
,
N.
,
2019
, “
A Novel Combustion System for Liquid Fuel Evaporating and Burning
,”
Pro. Combust. Inst.
,
37
(
4
), pp.
4329
4336
.10.1016/j.proci.2018.07.022
15.
Zhou
,
H.
,
Ren
,
T.
, and
Yang
,
Y.
,
2015
, “
Impact of a on Combustion and NOx Emissions of a Large-Scale Laboratory Furnace Fired by a Heavy-Oil Swirl Burner
,”
Appl. Therm. Eng.
,
90
, pp.
994
1006
.10.1016/j.applthermaleng.2015.07.076
16.
Pei
,
X. Y.
,
Abdul Jameel
,
A. G.
,
Chen
,
C.
,
AlGhamdi
,
I. A.
,
AlAhmadi
,
K. M.
,
AlBarakati
,
E.
,
Saxena
,
S.
, and
Roberts
,
W. L.
,
2021
, “
Swirling Flame Combustion of Heavy Fuel Oil: Effect of Fuel Sulfur Content
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), pp.
1
16
.10.1115/1.4048942
17.
Zhou
,
H.
,
Ren
,
T.
,
Huang
,
Y.
,
Hu
,
S.
, and
Cen
,
K.
,
2013
, “
Low-NOx Modification of a Heavy Fuel Oil Swirl Burner Based on Semi-Industrial Scale Experimental Tests
,”
Energy Fuels
,
27
(
9
), pp.
5029
5035
.10.1021/ef400238u
18.
Chen
,
R. H.
,
Driscoll
,
J. F.
,
Kelly
,
J.
,
Namazian
,
M.
, and
Schefer
,
R. W.
,
1990
, “
A Comparison of Bluff-Body and Swirl-Stabilized Flames
,”
Combust. Sci. Technol.
,
71
(
4–6
), pp.
197
217
.10.1080/00102209008951632
19.
Feikema
,
D.
,
Chen
,
R. H.
, and
Driscoll
,
J. F.
,
1990
, “
Enhancement of Flame Blowout Limits by the Use of Swirl
,”
Combust. Flame
,
80
(
2
), pp.
183
195
.10.1016/0010-2180(90)90126-C
20.
Metzger
,
B.
,
2007
, “
Glycerol Combustion
,” M.Sc. thesis,
North Carolina State University
,
Raleigh, NC
.
21.
Bohon
,
M. D.
,
Metzger
,
B. A.
,
Linak
,
W. P.
,
King
,
C. J.
, and
Roberts
,
W. L.
,
2011
, “
Glycerol Combustion and Emissions
,”
Pro. Combust. Inst.
,
33
(
2
), pp.
2717
2724
.10.1016/j.proci.2010.06.154
22.
Bohon
,
M. D.
,
Al Rashidi
,
M. J.
,
Sarathy
,
S. M.
, and
Roberts
,
W. L.
,
2015
, “
Experiments and Simulations of NOx Formation in the Combustion of Hydroxylated Fuels
,”
Combust. Flame
,
162
(
6
), pp.
2322
2336
.10.1016/j.combustflame.2015.01.022
23.
Bohon
,
M. D.
, and
Roberts
,
W. L.
,
2013
, “
NOx Emissions From High Swirl Turbulent Spray Flames With Highly Oxygenated Fuels
,”
Pro. Combust. Inst.
,
34
(
1
), pp.
1705
1712
.10.1016/j.proci.2012.07.064
24.
Elbaz
,
A. M.
,
Gani
,
A.
,
Hourani
,
N.
,
Emwas
,
A. H.
,
Sarathy
,
S. M.
, and
Roberts
,
W. L.
,
2015
, “
TG/DTG, FT-ICR Mass Spectrometry, and NMR Spectroscopy Study of Heavy Fuel Oil
,”
Energy Fuels
,
29
(
12
), pp.
7825
7835
.10.1021/acs.energyfuels.5b01739
25.
Feikema
,
D.
,
Chen
,
R.-H.
, and
Driscoll
,
J. F.
,
1991
, “
Blowout of Nonpremixed Flames: Maximum Coaxial Air Velocities Achievable, With and Without Swirl
,”
Combust. Flame
,
86
(
4
), pp.
347
358
.10.1016/0010-2180(91)90128-X
26.
Elbaz
,
A. M.
,
Yu
,
S.
,
Liu
,
X.
,
Bai
,
X. S.
,
Khesho
,
I.
, and
Roberts
,
W. L.
,
2019
, “
An Experimental/Numerical Investigation of the Role of the Quarl in Enhancing the Blowout Limits of Swirl-Stabilized Turbulent Non-Premixed Flames
,”
Fuel
,
236
, pp.
1226
1242
.10.1016/j.fuel.2018.09.064
27.
Borrás
,
E.
,
Tortajada-Genaro
,
L. A.
,
Vázquez
,
M.
, and
Zielinska
,
B.
,
2009
, “
Polycyclic Aromatic Hydrocarbon Exhaust Emissions From Different Reformulated Diesel Fuels and Engine Operating Conditions
,”
Atmos. Environ.
,
43
(
37
), pp.
5944
5952
.10.1016/j.atmosenv.2009.08.010
28.
Irimiea
,
C.
,
Faccinetto
,
A.
,
Carpentier
,
Y.
,
Ortega
,
I.-K.
,
Nuns
,
N.
,
Therssen
,
E.
,
Desgroux
,
P.
, and
Focsa
,
C.
,
2018
, “
A Comprehensive Protocol for Chemical Analysis of Flame Combustion Emissions by Secondary Ion Mass Spectrometry
,”
Rapid Commun. Mass Spectrom.
,
32
(
13
), pp.
1015
1025
.10.1002/rcm.8133
29.
Syred
,
N.
, and
Beér
,
J. M.
,
1974
, “
Combustion in Swirling Flows: A Review
,”
Combust. Flame
,
23
(
2
), pp.
143
201
.10.1016/0010-2180(74)90057-1
30.
Ribeiro
,
M. M.
, and
Whitelaw
,
J. H.
,
1980
, “
Coaxial Jets With and Without Swirl
,”
J. Fluid Mech.
,
96
(
04
), pp.
769
795
.10.1017/S0022112080002352
31.
Zhen
,
H. S.
,
Leung
,
C. W.
, and
Cheung
,
C. S.
,
2009
, “
Heat Transfer From a Turbulent Swirling Inverse Diffusion Flame to a Flat Surface
,”
Int. J. Heat Mass Transfer
,
52
(
11–12
), pp.
2740
2748
.10.1016/j.ijheatmasstransfer.2008.12.010
32.
Sequera
,
D.
,
Agrawal
,
A. K.
,
Spear
,
S. K.
, and
Daly
,
D. T.
,
2008
, “
Combustion Performance of Liquid Bio-Fuels in a Swirl-Stabilized Burner
,”
ASME J. Eng. Gas Turbines Power
,
130
(
3
), pp.
032810
032819
.10.1115/1.2836747
33.
Jun
,
H. M.
,
Kim
,
J. H.
,
Lee
,
S. H.
, and
Yoh
,
J. J.
,
2018
, “
Towards Simplified Monitoring of Instantaneous Fuel Concentration in Both Liquid and Gas Fueled Flames Using a Combustor Injectable Libs Plug
,”
Energy
,
160
, pp.
225
232
.10.1016/j.energy.2018.07.016
34.
Koc
,
A. B.
, and
Abdullah
,
M.
,
2013
, “
Performance and NOx Emissions of a Diesel Engine Fueled With Biodiesel-Diesel-Water Nanoemulsions
,”
Fuel Process. Technol.
,
109
, pp.
70
77
.10.1016/j.fuproc.2012.09.039
35.
Azoumah
,
Y.
,
Blin
,
J.
, and
Daho
,
T.
,
2009
, “
Exergy Efficiency Applied for the Performance Optimization of a Direct Injection Compression Ignition (CI) Engine Using Biofuels
,”
Renewable Energy
,
34
(
6
), pp.
1494
1500
.10.1016/j.renene.2008.10.026
36.
Çelikten
,
İ.
,
Mutlu
,
E.
, and
Solmaz
,
H.
,
2012
, “
Variation of Performance and Emission Characteristics of a Diesel Engine Fueled With Diesel, Rapeseed Oil and Hazelnut Oil Methyl Ester Blends
,”
Renewable Energy
,
48
, pp.
122
126
.10.1016/j.renene.2012.04.040
37.
Testo350
, 2017, “
Combustion & Emission Analyzer Instruction Manual
,” Testo AG.
38.
Triballier
,
K.
,
Dumouchel
,
C.
, and
Cousin
,
J.
,
2003
, “
A Technical Study on the Spraytec Performances: Influence of Multiple Light Scattering and Multi-Modal Drop-Size Distribution Measurements
,”
Exp. Fluids
,
35
(
4
), pp.
347
356
.10.1007/s00348-003-0674-1
39.
Priol
,
L.
,
Baudel
,
P.
,
Louste
,
C.
, and
Romat
,
H.
,
2006
, “
Theoretical and Experimental Study (Linear Stability and Malvern Granulometry) on Electrified Jets of Diesel Oil in Atomization Regime
,”
J. Electrostat.
,
64
(
7–9
), pp.
591
596
.10.1016/j.elstat.2005.10.022
40.
Baert
,
R. S. G.
,
1993
, “
A Mathematical Model for Heavy Fuel Droplet Vaporization and Pyrolysis in a High Temperature Inert Gas
,”
Combust. Sci. Technol.
,
90
(
1–4
), pp.
125
147
.10.1080/00102209308907607
41.
Khateeb
,
A.
,
Elbaz
,
A. M.
,
Guida
,
P.
, and
Roberts
,
W. L.
,
2018
, “
Influence of Asphaltene Concentration on the Combustion of a Heavy Fuel Oil Droplet
,”
Energy Fuels
,
32
(
12
), pp.
12981
12991
.10.1021/acs.energyfuels.8b03260
42.
Li
,
Y. H.
,
Radovic
,
L. R.
,
Lu
,
G. Q.
, and
Rudolph
,
V.
,
1999
, “
A New Kinetic Model for the No–Carbon Reaction
,”
Chem. Eng. Sci.
,
54
(
19
), pp.
4125
4136
.10.1016/S0009-2509(99)00121-9
43.
De Blas
,
L. J. M.
,
1998
, “
Pollutant Formation and Interaction in the Combustion of Heavy Liquid Fuels
,”
Ph.D. thesis
,
University of London
,
London, UK
.https://discovery.ucl.ac.uk/id/eprint/10098628/
44.
Elbaz
,
A. M.
,
Khateeb
,
A. A.
, and
Roberts
,
W. L.
,
2018
, “
Pm From the Combustion of Heavy Fuel Oils
,”
Energy
,
152
, pp.
455
465
.10.1016/j.energy.2018.03.163
45.
Allouis
,
C.
,
Beretta
,
F.
, and
D'Alessio
,
A.
,
2003
, “
Structure of Inorganic and Carbonaceous Particles Emitted From Heavy Oil Combustion
,”
Chemosphere
,
51
(
10
), pp.
1091
1096
.10.1016/S0045-6535(02)00714-2
46.
Pei
,
X. Y.
, and
Hou
,
L. Y.
,
2016
, “
Effect of Dissolved Oxygen Concentration on Coke Deposition of Kerosene
,”
Fuel Process. Technol.
,
142
, pp.
86
91
.10.1016/j.fuproc.2015.09.029
You do not currently have access to this content.