Abstract

Accurate and efficient predictions of the steady and unsteady flow responses due to the blade-to-blade variation as well as due to the nonaxisymmetric inlet distortion have been continually pursued. Computation of two problems concurrently has been rarely done in the past partly because of the need to perform whole annulus bladerow simulations, despite the advances in the current state-of-the-art methods with the phase-shift single passage simulations. The current work attempts to deal with this challenge by developing a new computational approach based on the principle of the multiscale method in the framework of a commercial solver (CFX). The methodology formulation relies on summation of the constituent source terms, each of which corresponds to a particular flow perturbation. The source term element corresponding to the blade-to-blade variation effect is linearly superimposed as in the classical Influence Coefficient Method. The unsteady flow field around a blade at any time instant depends only on its relative position to all its neighboring blades, so that the influences of an arbitrarily mis-staggered bladerow can be computed efficiently. In addition, the source term arisen due to the inlet distortion is calculated based on the spatial Fourier transform. A key enabler is that the source terms can be precomputed using a small set of identical blade passages. The source term is then propagated to different spatial and temporal locations depending on the combination of the mis-staggering pattern and the inlet distortion. The multiscale treatment makes it possible to predict a high-resolution flow field effects on the base coarse mesh as if a fine mesh were locally solved, while achieving a considerable computational efficiency gain. The proposed influence-coefficient and source term based method has been validated for test cases with a uniformly staggered bladerow, and for an arbitrarily mis-staggered bladerow, under a clean inflow condition as well as that subject to an inlet distortion.

References

1.
Erdos
,
J. I.
,
Alzner
,
E.
, and
McNally
,
W.
,
1977
, “
Numerical Simulation of Periodic Transonic Flow Through a Fan Stage
,”
AIAA J.
,
15
(
11
), pp.
1559
1568
.10.2514/3.60823
2.
Giles
,
M. B.
,
1990
, “
Stator/Rotor Interaction in a Transonic Turbine
,”
AIAA J. Propul. Power
,
6
(
5
), pp.
621
627
.10.2514/3.23263
3.
He
,
L.
,
1990
, “
An Euler Solution for Unsteady Flows Around Oscillating Blades
,”
ASME J. Turbomach.
,
112
(
4
), pp.
714
722
.10.1115/1.2927714
4.
Gerolymos
,
G. A.
,
Michon
,
G. J.
, and
Neubauer
,
J.
,
2002
, “
Analysis and Application of Chorochronic Periodicity in Turbomachinery Rotor/Stator Interaction Computations
,”
AIAA J. Propul. Power
,
18
(
6
), pp.
1139
1152
.10.2514/2.6065
5.
He
,
L.
, and
Ning
,
W.
,
1998
, “
Efficient Approach for Analysis of Unsteady Viscous Flows in Turbomachines
,”
AIAA J.
,
36
(
11
), pp.
2005
2012
.10.2514/2.328
6.
Hall
,
K. C.
,
Thomas
,
J. P.
, and
Clark
,
W. S.
,
2002
, “
Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique
,”
AIAA J.
,
40
(
5
), pp.
879
886
.10.2514/2.1754
7.
Vilmin
,
S.
,
Lorrain
,
E.
,
Hirsch
,
C.
, and
Swoboda
,
M.
,
2006
, “
Unsteady Flow Modeling Across the Rotor/Stator Interface Using the Nonlinear Harmonic Method
,”
ASME
Paper No. GT2006-90210.10.1115/GT2006-90210
8.
McMullen
,
M. S.
, and
Jameson
,
A.
,
2006
, “
The Computational Efficiency of Non-Linear Frequency Domain Methods
,”
J. Comput. Phys.
,
212
(
2
), pp.
637
661
.10.1016/j.jcp.2005.07.021
9.
Frey
,
C.
,
Ashcroft
,
G.
,
Kersken
,
H. P.
, and
Voigt
,
C.
,
2014
, “
A Harmonic Balance Technique for Multistage Turbomachinery Applications
,”
ASME
Paper No. GT2014-25230.10.1115/GT2014-25230
10.
Crespo
,
J.
,
Corral
,
R.
, and
Pueblas
,
J.
,
2016
, “
An Implicit Harmonic Balance Method in Graphics Processing Units for Oscillating Blades
,”
ASME J. Turbomach.
,
138
(
3
), p.
031001
.10.1115/1.4031918
11.
He
,
L.
,
2010
, “
Fourier Methods for Turbomachinery Applications
,”
Prog. Aerosp. Sci.
,
46
(
8
), pp.
329
341
.10.1016/j.paerosci.2010.04.001
12.
Denton
,
J. D.
,
2010
, “
Some Limitations of Turbomachinery CFD
,”
ASME
Paper No. GT2010-22540.10.1115/GT2010-22540
13.
Cumpsty
,
N. A.
,
2010
, “
Some Lessons Learned
,”
ASME J. Turbomach.
,
132
(
4
), p.
041018
.10.1115/1.4001222
14.
Roberts
,
W. B.
,
Armin
,
A.
,
Kassaseya
,
G.
,
Suder
,
K. L.
,
Thorp
,
S. A.
, and
Strazisar
,
A. J.
,
2002
, “
The Effect of Variable Chord Length on Transonic Axial Rotor Performance
,”
ASME J. Turbomach.
,
124
(
3
), pp.
351
357
.10.1115/1.1459734
15.
Montomoli
,
F.
,
Massini
,
M.
, and
Salvadori
,
S.
,
2011
, “
Geometrical Uncertainty in Turbomachinery: Tip Gap and Fillet Radius
,”
Comput. Fluids
,
46
(
1
), pp.
362
368
.10.1016/j.compfluid.2010.11.031
16.
Lu
,
Y.
,
Green
,
J.
,
Stapelfeldt
,
S. C.
, and
Vahdati
,
M.
,
2019
, “
Effect of Geometric Variability on Running Shape and Performance of a Transonic Fan
,”
ASME J. Turbomach.
,
141
(
10
), p.
101012
.10.1115/1.4044676
17.
Wilson
,
M. J.
,
Imregun
,
M.
, and
Sayma
,
A. I.
,
2007
, “
The Effect of Stagger Variability in Gas Turbine Fan Assemblies
,”
ASME J. Turbomach.
,
129
(
2
), pp.
404
411
.10.1115/1.2437776
18.
Hoyniak
,
D.
, and
Fleeter
,
S.
,
1986
, “
The Effect of Circumferential Aerodynamic Detuning on Coupled Bending-Torsion Unstalled Supersonic Flutter
,”
ASME J. Turbomach.
,
108
(
2
), pp.
253
260
.10.1115/1.3262045
19.
Kaza
,
K. R. V.
, and
Kielb
,
R. E.
,
1984
, “
Flutter of Turbofan Rotors With Mistuned Blades
,”
AIAA J.
,
22
(
11
), pp.
1618
1625
.10.2514/3.8827
20.
Sadeghi
,
M.
, and
Liu
,
F.
,
2001
, “
Computation of Mistuning Effects on Cascade Flutter
,”
AIAA J.
,
39
(
1
), pp.
22
28
.10.2514/2.1297
21.
Ekici
,
K.
,
Kielb
,
R. E.
, and
Hall
,
K. C.
,
2013
, “
The Effect of Aerodynamic Asymmetries on Turbomachinery Flutter
,”
J. Fluids Struct.
,
36
, pp.
1
17
.10.1016/j.jfluidstructs.2012.08.009
22.
Hynes
,
T. P.
, and
Greitzer
,
E. M.
,
1987
, “
A Method for Assessing Effects of Circumferential Flow Distortion on Compressor Stability
,”
ASME J. Turbomach.
,
109
(
3
), pp.
371
379
.10.1115/1.3262116
23.
Longley
,
J. P.
,
Shin
,
H. W.
,
Plumley
,
R. E.
,
Silkowski
,
P. D.
,
Day
,
I. J.
,
Greitzer
,
E. M.
,
Tan
,
C. S.
, and
Wisler
,
D. C.
,
1996
, “
Effects of Rotating Inlet Distortion on Multistage Compressor Stability
,”
ASME J. Turbomach.
,
118
(
2
), pp.
181
188
.10.1115/1.2836624
24.
Fidalgo
,
V. J.
,
Hall
,
C. A.
, and
Colin
,
Y.
,
2012
, “
A Study of Fan-Distortion Interaction Within the NASA Rotor 67 Transonic Stage
,”
ASME J. Turbomach.
,
134
(
5
), p.
051011
.10.1115/1.4003850
25.
Hall
,
D. K.
,
Greitzer
,
E. M.
, and
Tan
,
C. S.
,
2017
, “
Analysis of Fan Stage Conceptual Design Attributes for Boundary Layer Ingestion
,”
ASME J. Turbomach.
,
139
(
7
), p.
071012
.10.1115/1.4035631
26.
Provenza
,
A. J.
,
Duffy
,
K. P.
, and
Bakhle
,
M. A.
,
2019
, “
Aeromechanical Response of a Distortion-Tolerant Boundary Layer Ingesting Fan
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011011
.10.1115/1.4040739
27.
Gunn
,
E. J.
, and
Hall
,
C. A.
,
2019
, “
Nonaxisymmetric Stator Design for Boundary Layer Ingesting Fans
,”
ASME J. Turbomach.
,
141
(
7
), p.
071010
.10.1115/1.4043343
28.
Li
,
H. D.
, and
He
,
L.
,
2001
, “
Single-Passage Solution of Three-Dimensional Unsteady Flows in a Transonic Fan Rotor
,”
Proc. Inst. Mech. Eng. A
,
215
(
6
), pp.
653
662
.10.1243/0957650011538965
29.
He
,
L.
,
2006
, “
Fourier Modeling of Steady and Unsteady Nonaxisymmetrical Flows
,”
AIAA J. Propul. Power
,
22
(
1
), pp.
197
201
.10.2514/1.15701
30.
Li
,
H. D.
, and
He
,
L.
,
2002
, “
Single-Passage Analysis of Unsteady Flows Around Vibrating Blades of a Transonic Fan Under Inlet Distortion
,”
ASME J. Turbomach.
,
124
(
2
), pp.
285
292
.10.1115/1.1450567
31.
Sharma
,
G.
,
Zori
,
L.
,
Connell
,
S.
, and
Godin
,
P.
,
2013
, “
Efficient Computation of Large Pitch Ratio Transonic Flow in a Fan With Inlet Distortion
,”
ASME
Paper No. GT2013-95059.10.1115/GT2013-95059
32.
Miyakozawa
,
T.
,
Kielb
,
R. E.
, and
Hall
,
K. C.
,
2009
, “
The Effects of Aerodynamic Asymmetric Perturbations on Forced Response of Bladed Disks
,”
ASME J. Turbomach.
,
131
(
4
), p.
041008
.10.1115/1.3068319
33.
Petrov
,
E. P.
,
2010
, “
A Method for Forced Response Analysis of Mistuned Bladed Disks With Aerodynamic Effects Included
,”
ASME J. Eng. Gas Turbines Power
,
132
(
6
), p.
062502
.10.1115/1.4000117
34.
He
,
L.
,
2013
, “
Fourier Spectral Modeling for Multi-Scale Aero-Thermal Analysis
,”
Int. J. Comput. Fluid Dyn.
,
27
(
2
), pp.
118
129
.10.1080/10618562.2013.763935
35.
He
,
L.
,
2013
, “
Block-Spectral Mapping for Multi-Scale Solution
,”
J. Comput. Phys.
,
250
, pp.
13
26
.10.1016/j.jcp.2013.05.004
36.
He
,
L.
,
2018
, “
Multiscale Block Spectral Solution for Unsteady Flows
,”
Int. J. Numer. Methods Fluids
,
86
(
10
), pp.
655
678
.10.1002/fld.4472
37.
Duan
,
P. H.
, and
He
,
L.
,
2020
, “
Application of Multiscale Methodology for Transonic Turbine Blade Tip Cooling Design
,”
ASME J. Turbomach.
,
142
(
8
), p.
081011
.10.1115/1.4046462
38.
Kapsis
,
M.
,
He
,
L.
,
Li
,
Y. S.
,
Valero
,
O.
,
Wells
,
R. G.
,
Krishnababu
,
S.
,
Gupta
,
G.
,
Kapat
,
J.
, and
Schaenzer
,
M.
,
2020
, “
Multiscale Parallelized Computational Fluid Dynamics Modeling Toward Resolving Manufacturable Roughness
,”
ASME J. Eng. Gas Turbines Power
,
142
(
2
), p.
021001
.10.1115/1.4045481
39.
Ning
,
W.
, and
He
,
L.
,
2001
, “
Some Modeling Issues on Trailing-Edge Vortex Shedding
,”
AIAA J.
,
39
(
5
), pp.
787
793
.10.2514/2.1411
40.
He
,
L.
,
1992
, “
Method of Simulating Unsteady Turbomachinery Flows With Multiple Perturbations
,”
AIAA J.
,
30
(
11
), pp.
2730
2735
.10.2514/3.11291
41.
Zhang
,
M.
, and
He
,
L.
,
2018
, “
Efficient Large-Eddy Simulation Method for Blade Trailing-Edge Cooling Optimization
,”
AIAA J. Propul. Power
,
34
(
4
), pp.
854
863
.10.2514/1.B36501
42.
Hanamura
,
Y.
,
Tanaka
,
H.
, and
Yamaguchi
,
K.
,
1980
, “
A Simplified Method to Measure Unsteady Forces Acting on the Vibrating Blades in Cascade
,”
Bull. JSME
,
23
(
180
), pp.
880
887
.10.1299/jsme1958.23.880
43.
Bölcs
,
A.
, and
Fransson
,
T. H.
,
1986
, “
Aeroelasticity in Turbomachines: Comparison of Theoretical and Experimental Cascade Results
,”
Communication No. 13 Lab de Thermique Appliquee
,
Ecole Polytechnique Federale de Lausanne (EPFL)
,
Switzerland
.https://apps.dtic.mil/dtic/tr/fulltext/u2/a181763.pdf
44.
Buffum
,
D. H.
, and
Fleeter
,
S.
,
1990
, “
Oscillating Cascade Aerodynamics by an Experimental Influence Coefficient Technique
,”
AIAA J. Propul. Power
,
6
(
5
), pp.
612
620
.10.2514/3.23262
45.
He
,
L.
,
1998
, “
Unsteady Flow in Oscillating Turbine Cascade: Part 1 – Linear Cascade Experiment
,”
ASME J. Turbomach.
,
120
(
2
), pp.
262
268
.10.1115/1.2841401
46.
He
,
L.
,
1998
, “
Unsteady Flow in Oscillating Turbine Cascade: Part 2 – Computational Study
,”
ASME J. Turbomach.
,
120
(
2
), pp.
269
275
.10.1115/1.2841402
47.
Bell
,
D. L.
, and
He
,
L.
,
2000
, “
Three-Dimensional Unsteady Flow for an Oscillating Turbine Blade and the Influence of Tip Leakage
,”
ASME J. Turbomach.
,
122
(
1
), pp.
93
101
.10.1115/1.555432
48.
Huang
,
X. Q.
,
He
,
L.
, and
Bell
,
D. L.
,
2008
, “
Effects of Tip Clearance on Aerodynamic Damping in a Linear Turbine Cascade
,”
AIAA J. Propul. Power
,
24
(
1
), pp.
26
33
.10.2514/1.25174
49.
Huang
,
X. Q.
,
He
,
L.
, and
Bell
,
D. L.
,
2009
, “
Experimental and Computational Study of Oscillating Turbine Cascade and Influence of Part-Span Shrouds
,”
ASME J. Fluids Eng.
,
131
(
5
), p.
051102
.10.1115/1.3111254
50.
Vogt
,
D. M.
, and
Fransson
,
T. H.
,
2007
, “
Experimental Investigation of Mode Shape Sensitivity of an Oscillating Low-Pressure Turbine Cascade at Design and Off-Design Conditions
,”
ASME J. Eng. Gas Turbines Power
,
129
(
2
), pp.
530
541
.10.1115/1.2436567
51.
Watanabe
,
T.
,
Azuma
,
T.
,
Uzawa
,
S.
,
Himeno
,
T.
, and
Inoue
,
C.
,
2018
, “
Unsteady Pressure Measurement on Oscillating Blade in Transonic Flow Using Fast-Response Pressure-Sensitive Paint
,”
ASME J. Turbomach.
,
140
(
6
), p.
061003
.10.1115/1.4039180
52.
Malzacher
,
L.
,
Schwarze
,
C.
,
Motta
,
V.
, and
Peitsch
,
D.
,
2019
, “
Experimental Investigation of an Aerodynamically Mistuned Oscillating Compressor Cascade
,”
ASME J. Turbomach.
,
141
(
7
), p.
071012
.10.1115/1.4043474
53.
Li
,
H. D.
, and
He
,
L.
,
2005
, “
Toward Intra-Row Gap Optimization for One and Half Stage Transonic Compressor
,”
ASME J. Turbomach.
,
127
(
3
), pp.
589
598
.10.1115/1.1928934
54.
Lane
,
F.
,
1956
, “
System Mode Shapes in the Flutter of Compressor Blade Rows
,”
J. Aeronaut. Sci.
,
23
(
1
), pp.
54
66
.10.2514/8.3502
55.
Barth
,
T.
, and
Jespersen
,
D.
,
1989
, “
The Design and Application of Upwind Schemes on Unstructured Meshes
,”
AIAA
Paper No. 89-0366.10.2514/6.1989-366
56.
Elazar
,
Y.
, and
Shreeve
,
R. P.
,
1990
, “
Viscous Flow in a Controlled Diffusion Compressor Cascade With Increasing Incidence
,”
ASME J. Turbomach.
,
112
(
2
), pp.
256
265
.10.1115/1.2927642
57.
Yang
,
H.
, and
He
,
L.
,
2004
, “
Experimental Study on Linear Compressor Cascade With Three-Dimensional Blade Oscillation
,”
AIAA J. Propul. Power
,
20
(
1
), pp.
180
188
.10.2514/1.1280
58.
Phan
,
H. M.
, and
He
,
L.
,
2020
, “
Validation Studies of Linear Oscillating Compressor Cascade and Use of Influence Coefficient Method
,”
ASME J. Turbomach.
,
142
(
5
), p.
051005
.10.1115/1.4045657
59.
Menter
,
F. R.
,
Langtry
,
R. B.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
VöLker
,
S.
,
2006
, “
A Correlation-Based Transition Model Using Local Variables – Part I: Model Formulation
,”
ASME J. Turbomach.
,
128
(
3
), pp.
413
422
.10.1115/1.2184352
60.
Plourde
,
G. A.
, and
Stenning
,
A. H.
,
1968
, “
Attenuation of Circumferential Inlet Distortion in Multistage Axial Compressors
,”
J. Aircr.
,
5
(
3
), pp.
236
242
.10.2514/3.43933
61.
Yao
,
J.
,
Gorrell
,
S. E.
, and
Wadia
,
A. R.
,
2010
, “
High-Fidelity Numerical Analysis of Per-Rev-Type Inlet Distortion Transfer in Multistage Fans – Part I: Simulations With Selected Blade Rows
,”
ASME J. Turbomach.
,
132
(
4
), p.
041014
.10.1115/1.3148478
You do not currently have access to this content.