Abstract

This paper focuses on the inverse finite element analysis (FEA) to calculate the small punch technique (SPT) tests and the prediction of the tensile and fracture toughness behavior. For the description of the SPT tests via FEA, the hardening rule of Ramberg–Osgood (RO) and the damage model of Gursson–Tvergaard–Needleman (GTN) were used. The inverse FEA optimization process cannot provide a unique solution for the 12 parameters included in the material model. This results from a dependency between some parameters, which leads to the same solution in the optimization. Hence, a novel description of the dependent parameters was developed and implemented within the optimization process. Therefore, an enhanced inverse FEA approach was proposed, which provides a fast converging solution for determination of the material model parameters. Within this study, the forged turbine shaft material EN: 27NiCrMoV15-6 was investigated. For comparison purpose, SPT tests as well as tensile tests and fracture toughness tests were carried out. In the case of the tensile properties, the test and simulation show coincidence in the curve and the characteristic values. For the toughness behavior, the characteristic value of the test was met by the simulation.

References

1.
Holländer
,
D.
,
Kulawinski
,
D.
,
Weidner
,
A.
,
Thiele
,
M.
,
Biermann
,
H.
, and
Gampe
,
U.
,
2016
, “
Small-Scale Specimen Testing for Fatigue Life Assessment of Service-Exposed Industrial Gas Turbine Blades
,”
Int. J. Fatigue
,
92
, pp.
262
271
.10.1016/j.ijfatigue.2016.07.014
2.
Holländer
,
D.
,
Kulawinski
,
D.
,
Thiele
,
M.
,
Damm
,
C.
,
Henkel
,
S.
,
Biermann
,
H.
, and
Gampe
,
U.
,
2016
, “
Investigation of Isothermal and Thermo-Mechanical Fatigue Behavior of the Nickel-Base Superalloy IN738 LC Using Standardized and Advanced Test Methods
,”
Mater. Sci. Eng.: A
,
670
, pp.
314
324
.10.1016/j.msea.2016.05.114
3.
Abbasi
,
W.
,
Rahman
,
S.
, and
Metala
,
M. J.
,
2010
, “
NDE and Material Evaluation for Lifetime Assessment of Power Plant Components
,”
Proceedings of the Tenth European Conference on Non-Destructive Testing
, Moscow, Russia, June 7–11, Paper No. 3119.https://www.ndt.net/article/ecndt2010/reports/4_01_09.pdf
4.
Bulloch
,
J. H.
,
2002
, “
A Review of the ESB Small Punch Test Data on Various Plant Components With Special Emphasis on Fractographic Details
,”
Eng. Failure Anal.
,
9
(
5
), pp.
511
534
.10.1016/S1350-6307(01)00034-6
5.
Manahan
,
M. P.
,
Argon
,
A. S.
, and
Harling
,
O. K.
,
1981
, “
The Development of a Miniaturized Disk Bend Test for the Determination of Postirradiation Mechanical Properties
,”
J. Nucl. Mater.
,
104
, pp.
1545
1550
.10.1016/0022-3115(82)90820-0
6.
Lucas
,
G. E.
,
1990
, “
Review of Small Specimen Test Techniques for Irradiation Testing
,”
Metall. Trans. A
,
21
(
4
), pp.
1105
1119
.10.1007/BF02656531
7.
Guan
,
K.
,
Xu
,
T.
,
Guo
,
L.
,
Fu
,
M.
, and
Zhu
,
H.
,
2017
, “
Determination of Fracture Toughness From Small Punch Test Using Inverse Finite Element Method for In-Service Equipment
,”
ASME
Paper No. ICONE25-67406.10.1115/ICONE25-67406
8.
Fernández
,
M.
,
Rodríguez
,
C.
,
Belzunce
,
F. J.
, and
García
,
T. E.
,
2017
, “
Use of Small Punch Test to Estimate the Mechanical Properties of Sintered Products and Application to Synchronizer Hubs
,”
Met. Powder Rep.
,
72
(
5
), pp.
355
360
.10.1016/j.mprp.2016.02.056
9.
Bruchhausen
,
M.
,
Holmström
,
S.
,
Simonovski
,
I.
,
Austin
,
T.
,
Lapetite
,
J.-M.
,
Ripplinger
,
S.
, and
de Haan
,
F.
,
2016
, “
Recent Developments in Small Punch Testing: Tensile Properties and DBTT
,”
Theor. Appl. Fract. Mech.
,
86
, pp.
2
10
.10.1016/j.tafmec.2016.09.012
10.
Fleury
,
E.
, and
Ha
,
J. S.
,
1998
, “
Small Punch Tests to Estimate the Mechanical Properties of Steels for Steam Power Plant: I. Mechanical Strength
,”
Int. J. Pressure Vessels Piping
,
75
(
9
), pp.
699
706
.10.1016/S0308-0161(98)00074-X
11.
Ha
,
J. S.
, and
Fleury
,
E.
,
1998
, “
Small Punch Tests to Estimate the Mechanical Properties of Steels for Steam Power Plant—II: Fracture Toughness
,”
Int. J. Pressure Vessels Piping
,
75
(
9
), pp.
707
713
.10.1016/S0308-0161(98)00075-1
12.
Jeon
,
J-Y
,
Ryu
,
D-I
,
Kim
,
Y-J
,
Lee
,
M-Y
, and
Kim
,
J-W
,
2014
, “
A Method to Quantify Thermal Aging Effect on Fracture Toughness of Cast Stainless Steels Using Small Punch Test
,”
ASME
Paper No. PVP2014-28233. 10.1115/PVP2014-28233
13.
Kumar
,
K.
,
Pooleery
,
A.
,
Madhusoodanan
,
K.
,
Singh
,
R. N.
,
Chakravartty
,
J. K.
,
Shriwastaw
,
R. S.
,
Dutta
,
B. K.
, and
Sinha
,
R. K.
,
2015
, “
Evaluation of Ultimate Tensile Strength Using Miniature Disk Bend Test
,”
J. Nucl. Mater.
,
461
, pp.
100
111
.10.1016/j.jnucmat.2015.02.029
14.
Calaf-Chica
,
J.
,
Díez
,
P. M. B.
,
Calzada
,
M. P.
, and
Ballorca-Juez
,
D.
,
2019
, “
A Systematic FEM Analysis of the Influence of Mechanical Properties in the Reliability of the Correlation Methods in the Small Punch Test
,”
Int. J. Mech. Sci.
,
153–154
, pp.
299
309
.10.1016/j.ijmecsci.2019.02.013
15.
Egan
,
P.
,
Whelan
,
M. P.
,
Lakestani
,
F.
, and
Connelly
,
M. J.
,
2007
, “
Small Punch Test: An Approach to Solve the Inverse Problem by Deformation Shape and Finite Element Optimization
,”
Comput. Mater. Sci.
,
40
(
1
), pp.
33
39
.10.1016/j.commatsci.2006.10.021
16.
Cuesta
,
I. I.
,
Alegre
,
J. M.
, and
Lacalle
,
R.
,
2010
, “
Determination of the Gurson–Tvergaard Damage Model Parameters for Simulating Small Punch Tests
,”
Fatigue Fract. Eng. Mater. Struct.
,
33
(
11
), pp.
703
713
.10.1111/j.1460-2695.2010.01481.x
17.
Ramberg
,
W.
, and
Osgood
,
W. R.
,
1943
, “
Description of Stress-Strain Curves by Three Parameters
,” National Advisory Committee for Aeronautics, Washington, DC, Report No.
NACA-TN-902
.http://www.apesolutions.com/spd/public/NACA-TN902.pdf
18.
Gurson
,
A. L.
,
1976
, “
Porous Rigid-Plastic Materials Containing Rigid Inclusions: Yield Function, Plastic Potential, and Void Nucleation
,” Division of Engineering, Brown University, Providence, RI, Report.
19.
Nielsen
,
K. L.
, and
Tvergaard
,
V.
,
2009
, “
Effect of a Shear Modified Gurson Model on Damage Development in a FSW Tensile Specimen
,”
Int. J. Solids Struct.
,
46
(
3–4
), pp.
587
601
.10.1016/j.ijsolstr.2008.09.011
20.
Zhong
,
J.
,
Xu
,
T.
,
Guan
,
K.
, and
Szpunar
,
J.
,
2019
, “
A Procedure for Predicting Strength Properties Using Small Punch Test and Finite Element Simulation
,”
Int. J. Mech. Sci.
,
152
, pp.
228
235
.10.1016/j.ijmecsci.2019.01.006
21.
Abendroth
,
M.
,
2004
, “
Identifikation Elastoplastischer Und Schädigungsmechanischer Materialparameter Aus Dem Small Punch Test
,” Ph.D. thesis, Technische Universität Bergakademie Freiberg, Freiberg, Germany.
22.
Li
,
K.
,
Peng
,
J.
, and
Zhou
,
C.
,
2018
, “
Construction of Whole Stress-Strain Curve by Small Punch Test and Inverse Finite Element
,”
Results Phys.
,
11
, pp.
440
448
.10.1016/j.rinp.2018.09.024
23.
Abendroth
,
M.
, and
Kuna
,
M.
,
2003
, “
Determination of Deformation and Failure Properties of Ductile Materials by Means of the Small Punch Test and Neural Networks
,”
Comput. Mater. Sci.
,
28
(
3–4
), pp.
633
644
.10.1016/j.commatsci.2003.08.031
24.
Chang
,
Y.-S.
,
Kim
,
J.-M.
,
Choi
,
J.-B.
,
Kim
,
Y.-J.
,
Kim
,
M.-C.
, and
Lee
,
B.-S.
,
2008
, “
Derivation of Ductile Fracture Resistance by Use of Small Punch Specimens
,”
Eng. Fract. Mech.
,
75
(
11
), pp.
3413
3427
.10.1016/j.engfracmech.2007.06.006
25.
Martínez-Pañeda
,
E.
,
García
,
T. E.
, and
Rodríguez
,
C.
,
2016
, “
Fracture Toughness Characterization Through Notched Small Punch Test Specimens
,”
Mater. Sci. Eng.: A
,
657
, pp.
422
430
.10.1016/j.msea.2016.01.077
26.
Li
,
Y.
,
Matocha
,
K.
,
Hurst
,
R.
,
Čižek
,
P.
,
Turba
,
K.
, and
Stevens
,
P.
,
2019
, “
Experimental Verification to Determine Fracture Toughness From the Small Punch Test Using “Local Approach
,”
Theor. Appl. Fract. Mech.
,
102
, pp.
16
29
.10.1016/j.tafmec.2019.03.015
27.
Bruchhausen
,
M.
,
Altstadt
,
E.
,
Austin
,
T.
,
Dymacek
,
P.
,
Holmström
,
S.
,
Jeffs
,
S.
,
Lacalle
,
R.
,
Lancaster
,
R.
,
Matocha
,
K.
, and
Petzova
,
J.
,
2018
, “European Standard on Small Punch Testing of Metallic Materials,” Ubiquity Proceedings,
1
(
S1
), p.
11
.
28.
ASTM
,
2020
, “
Standard Test Method for Measurement of Fracture Toughness
,” ASTM, West Conshohocken, PA, Standard No.
ASTM E1820-20b
.https://www.astm.org/Standards/E1820
29.
Gurson
,
A. L.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media
,”
ASME J. Eng. Mater. Technol.
,
99
(
1
), pp.
2
15
.10.1115/1.3443401
30.
Tvergaard
,
V.
,
1981
, “
Influence of Voids on Shear Band Instabilities Under Plane Strain Conditions
,”
Int. J. Fract.
,
17
(
4
), pp.
389
407
.10.1007/BF00036191
31.
Tvergaard
,
V.
, and
Needleman
,
A.
,
1995
, “
Effects of Nonlocal Damage in Porous Plastic Solids
,”
Int. J. Solids Struct.
,
32
(
8–9
), pp.
1063
1077
.10.1016/0020-7683(94)00185-Y
32.
Dotta
,
F.
, and
Ruggieri
,
C.
,
2004
, “
Structural Integrity Assessments of High Pressure Pipelines With Axial Flaws Using a Micromechanics Model
,”
Int. J. Pressure Vessels Piping
,
81
(
9
), pp.
761
770
.10.1016/j.ijpvp.2004.04.004
33.
Gülçimen Çakan
,
B.
,
Soyarslan
,
C.
,
Bargmann
,
S.
, and
Hähner
,
P.
,
2017
, “
Experimental and Computational Study of Ductile Fracture in Small Punch Tests
,”
Materials
,
10
(
10
), p.
1185
.10.3390/ma10101185
34.
Franklin
,
A. G.
,
1969
, “
Comparison Between a Quantitative Microscope and Chemical Methods for Assessment of Non-Metallic Inclusions
,”
J. Iran Steel Inst.
,
207
(
2
), pp.
181
186
.
35.
Kang
,
T.
,
Kim
,
H.-H.
,
Song
,
S.-J.
, and
Kim
,
H.-J.
,
2012
, “
Characterization of Fatigue Damage of Al6061-T6 With Ultrasound
,”
NDT E Int.
,
52
, pp.
51
56
.10.1016/j.ndteint.2012.08.001
36.
Bernauer
,
G.
,
Brocks
,
W.
,
Mühlich
,
U.
,
Steglich
,
D.
, and
Werwer
,
M.
,
1999
, “
Hinweise zur Anwendung des Gurson-Tvergaard-Needleman-Modells
,” Institut für Werkstoffforschung, GKSS-Forschungszentrum, Geesthacht, Germany, Report.https://www.hzg.de/imperia/md/content/hzg/institut_fuer_werkstoffforschung/wms/gtnbericht.pdf
37.
Seupel
,
A.
,
Hütter
,
G.
, and
Kuna
,
M.
,
2018
, “
An Efficient FE-Implementation of Implicit Gradient-Enhanced Damage Models to Simulate Ductile Failure
,”
Eng. Fract. Mech.
,
199
, pp.
41
60
.10.1016/j.engfracmech.2018.01.022
You do not currently have access to this content.