Abstract

This paper reports on an optimization study of the CO turndown behavior of an axially staged combustor, in the context of industrial gas turbines (GTs). The aim of this work is to assess the optimally achievable CO turndown behavior limit given system and operating characteristics, without considering flow-induced behaviors such as mixing quality and flame spatial characteristics. To that end, chemical reactor network (CRN) modeling is used to investigate the impact of various system and operating conditions on the exhaust CO emissions of each combustion stage, as well as at the combustor exit. Different combustor residence time combinations are explored to determine their contribution to the exhaust CO emissions. The two-stage combustor modeled in this study consists of a primary (Py) and a secondary (Sy) combustion stage, followed by a discharge nozzle (DN), which distributes the exhaust to the turbines. The Py is modeled using a freely propagating flame (FPF), with the exhaust gas extracted downstream of the flame front at a specific location corresponding to a specified residence time (tr). These exhaust gases are then mixed and combusted with fresh gases in the Sy, modeled by a perfectly stirred reactor (PSR) operating within a set tr. These combined gases then flow into the DN, which is modeled by a plug flow reactor (PFR) that cools the gas to varying combustor exit temperatures within a constrained tr. Together, these form a simplified CRN model of a two-stage, dry-low emissions (DLEs) combustion system. Using this CRN model, the impact of the tr distribution between the Py, Sy, and DN is explored. A parametric study is conducted to determine how inlet pressure (Pin), inlet temperature (Tin), equivalence ratio (ϕ), and Py–Sy fuel split (FS), individually impact indicative CO turndown behavior. Their coupling throughout engine load is then investigated using a model combustor, and its effect on CO turndown is explored. Thus, this aims to deduce the fundamental, chemically driven parameters considered to be most important for identifying the optimal CO turndown of GT combustors. In this work, a parametric study and a model combustor study are presented. The parametric study consists of changing a single parameter at a time, to observe the independent effect of this change and determine its contribution to CO turndown behavior. The model combustor study uses the same CRN, and varies the parameters simultaneously to mimic their change as an engine moves through its steady-state power curve. The latter study thus elucidates the difference in CO turndown behavior when all operating conditions are coupled, as they are in practical engines. The results of this study aim to demonstrate the parameters that are key for optimizing and improving CO turndown.

References

1.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion: Alternative Fuels and Emissions
, 3rd ed.,
CRC Press
,
Boca Raton, FL
.
2.
Lieuwen
,
T. C.
,
Chang
,
M.
, and
Amato
,
A.
,
2013
, “
Stationary Gas Turbine Combustion: Technology Needs and Policy Considerations
,”
Combust. Flame
,
160
(
8
), pp.
1311
1314
.10.1016/j.combustflame.2013.05.001
3.
Lieuwen
,
T. C.
, and
Yang
,
V.
,
2013
,
Gas Turbine Emissions
,
Cambridge University Press
,
New York
.
4.
Willis
,
J. D.
,
Toon
,
I. J.
,
Schweiger
,
T.
, and
Owen
,
D. A.
,
1993
, “
Industrial RB211 Dry Low Emission Combustion
,”
ASME
Paper No. 93-GT-391.10.1115/93-GT-391
5.
Versailles
,
P.
,
Watson
,
G. M. G.
,
Lipardi
,
A. C. A.
, and
Bergthorson
,
J. M.
,
2016
, “
Quantitative CH Measurements in Atmospheric-Pressure, Premixed Flames of C1–C4 Alkanes
,”
Combust. Flame
,
165
, pp.
109
124
.10.1016/j.combustflame.2015.11.001
6.
Watson
,
G. M. G.
,
Versailles
,
P.
, and
Bergthorson
,
J. M.
,
2016
, “
NO Formation in Premixed Flames of C1-C4 Alkanes and Alcohols
,”
Combust. Flame
,
169
, pp.
242
260
.10.1016/j.combustflame.2016.04.015
7.
Hackney
,
R.
,
Sadasivuni
,
S. K.
,
Rogerson
,
J. W.
, and
Bulat
,
G.
,
2016
, “
Predictive Emissions Monitoring System for Small Siemens Dry Low Emissions Combustors: Validation and Application
,”
ASME
Paper No. GT2016-57656.10.1115/GT2016-57656
8.
Jella
,
S. E.
,
Gauthier
,
P. Q.
,
Bourque
,
G.
,
Bergthorson
,
J. M.
,
Bulat
,
G.
,
Rogerson
,
J.
, and
Sadasivuni
,
S. K.
,
2017
, “
Large Eddy Simulations of a Pressurised, Partially-Premixed Swirling Flame With Finite-Rate Chemistry
,”
ASME
Paper No. GT2017-65256.10.1115/GT2017-65256
9.
Klarmann
,
N.
,
Zoller
,
B. T.
, and
Sattelmayer
,
T.
,
2018
, “
Numerical Modeling of CO-Emissions for Gas Turbine Combustors Operating at Part-Load Conditions
,”
J. Global Power Propul. Soc.
,
2
, pp.
376
387
.10.22261/JGPPS.C3N5OA
10.
Klarmann
,
N.
,
Zoller
,
B. T.
, and
Sattelmayer
,
T.
,
2019
, “
Modeling of CO Emissions in Multi-Burner Systems With Fuel Staging
,”
ASME
Paper No. GT2019-90821.10.1115/GT2019-90821
11.
Bulat
,
G.
,
Jones
,
W.
, and
Marquis
,
A.
,
2013
, “
Large Eddy Simulation of an Industrial Gas-Turbine Combustion Chamber Using the Sub-Grid PDF Method
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3155
3164
.10.1016/j.proci.2012.07.031
12.
Jiang
,
B.
,
Gordon
,
R. L.
, and
Talei
,
M.
,
2019
, “
Head-On Quenching of Laminar Premixed Methane Flames Diluted With Hot Combustion Products
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5095
5103
.10.1016/j.proci.2018.07.120
13.
Palulli
,
R.
,
Talei
,
M.
, and
Gordon
,
R. L.
,
2019
, “
Unsteady Flame-Wall Interaction: Impact on CO Emissions and Wall Heat Flux
,”
Combust. Flame
,
207
, pp.
406
416
.10.1016/j.combustflame.2019.06.012
14.
Yousefian
,
S.
,
Bourque
,
G.
, and
Monaghan
,
R. F.
,
2017
, “
Review of Hybrid Emissions Prediction Tools and Uncertainty Quantification Methods for Gas Turbine Combustion Systems
,”
ASME
Paper No. GT2017-64271.10.1115/GT2017-64271
15.
Yousefian
,
S.
,
Bourque
,
G.
, and
Monaghan
,
R. F.
,
2019
, “
Uncertainty Quantification of NOx and CO Emissions in a Swirl-Stabilized Burner
,”
ASME J. Eng. Gas Turbines Power
,
141
(
10
), p.
101014
.10.1115/1.4044204
16.
Monaghan
,
R. F.
,
Tahir
,
R.
,
Cuoci
,
A.
,
Bourque
,
G.
,
Füri
,
M.
,
Gordon
,
R. L.
,
Faravelli
,
T.
,
Frassoldati
,
A.
, and
Curran
,
H. J.
,
2012
, “
Detailed Multi-Dimensional Study of Pollutant Formation in a Methane Diffusion Flame
,”
Energy Fuels
,
26
(
3
), pp.
1598
1611
.10.1021/ef201853k
17.
Monaghan
,
R. F.
,
Tahir
,
R.
,
Bourque
,
G.
,
Gordon
,
R. L.
,
Cuoci
,
A.
,
Faravelli
,
T.
,
Frassoldati
,
A.
, and
Curran
,
H. J.
,
2014
, “
Detailed Emissions Prediction for a Turbulent Swirling Nonpremixed Flame
,”
Energy Fuels
,
28
(
2
), pp.
1470
1488
.10.1021/ef402057w
18.
Goh
,
E.
,
Sirignano
,
M.
,
Li
,
J.
,
Nair
,
V.
,
Emerson
,
B.
,
Lieuwen
,
T. C.
, and
Seitzman
,
J. M.
,
2019
, “
Prediction of Minimum Achievable NOx Levels for Fuel-Staged Combustors
,”
Combust. Flame
,
200
, pp.
276
285
.10.1016/j.combustflame.2018.11.027
19.
Reaction Design
,
2013
, “Reaction Workbench 15131, CHEMKIN-PRO,” Reaction Design, San Diego, CA.
20.
Qin
,
Z.
,
Lissianski
,
V. V.
,
Yang
,
H.
,
Gardiner
,
W. C.
,
Davis
,
S. G.
, and
Wang
,
H.
,
2000
, “
Combustion Chemistry of Propane: A Case Study of Detailed Reaction Mechanism Optimization
,”
Proc. Combust. Inst.
,
28
(
2
), pp.
1663
1669
.10.1016/S0082-0784(00)80565-2
21.
Rivera
,
J. E.
,
Gordon
,
R. L.
, and
Talei
,
M.
,
2019
, “
Flame-Wall Interaction of a Forced Laminar Premixed Propane Flame: Flame Dynamics and Exhaust CO Emissions
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5385
5392
.10.1016/j.proci.2018.07.030
22.
Rivera
,
J. E.
,
Gordon
,
R. L.
,
Brouzet
,
D.
, and
Talei
,
M.
,
2019
, “
Exhaust CO Emissions of a Laminar Premixed Propane-Air Flame Interacting With Cold Gas Jets
,”
Combust. Flame
,
210
, pp.
374
388
.10.1016/j.combustflame.2019.09.001
23.
Kosaka
,
H.
,
Zentgraf
,
F.
,
Scholtissek
,
A.
,
Bischo
,
L.
,
Häber
,
T.
,
Suntz
,
R.
,
Albert
,
B.
,
Hasse
,
C.
, and
Dreizler
,
A.
,
2018
, “
Wall Heat Fluxes and CO Formation/Oxidation During Laminar and Turbulent Side-Wall Quenching of Methane and DME Flames
,”
Int. J. Heat Fluid Flow
,
70
, pp.
181
192
.10.1016/j.ijheatfluidflow.2018.01.009
24.
Poinsot
,
T.
,
Haworth
,
D. C.
, and
Bruneaux
,
G.
,
1993
, “
Direct Simulation and Modeling of Flame-Wall Interaction for Premixed Turbulent Combustion
,”
Combust. Flame
,
95
(
1–2
), pp.
118
132
.10.1016/0010-2180(93)90056-9
25.
Poinsot
,
T.
, and
Veynante
,
D.
,
2005
,
Theoretical and Numerical Combustion
, 2nd ed.,
Edwards
,
Philadelphia, PA
.
26.
Cheung
,
W. S.
,
Sims
,
G. J. M.
,
Copplestone
,
R. W.
,
Tilston
,
J. R.
,
Wilson
,
C. W.
,
Stow
,
S. R.
, and
Dowling
,
A. P.
,
2003
, “
Measurement and Analysis of Flame Transfer Function in a Sector Combustor Under High Pressure Conditions
,”
ASME
Paper No. GT2003-38219.10.1115/GT2003-38219
27.
Scarinci
,
T.
, and
Halpin
,
J. L.
,
2000
, “
Industrial Trent Combustor—Combustion Noise Characteristics
,”
ASME J. Eng. Gas Turbines Power
,
122
(
2
), pp.
280
286
.10.1115/1.483207
28.
Versailles
,
P.
,
Durocher
,
A.
,
Bourque
,
G.
, and
Bergthorson
,
J. M.
,
2019
, “
Nitric Oxide Formation in Lean, Methane-Air Stagnation Flames at Supra-Atmospheric Pressures
,”
Proc. Combust. Inst.
,
37
(
1
), pp.
711
718
.10.1016/j.proci.2018.05.060
You do not currently have access to this content.