Abstract

This paper presents an overview of the past and present of low-emission combustor research with hydrogen-rich fuels at Aachen University of Applied Sciences (AcUAS). In 1990, AcUAS started developing the dry-low-NOx Micromix combustion technology. Micromix reduces NOx emissions using jet-in-crossflow mixing of multiple miniaturized fuel jets and combustor air with an inherent safety against flashback. At first, pure hydrogen as fuel was investigated with lab-scale applications. Later, Micromix combustor prototypes were developed for the use in an industrial gas turbine Honeywell/Garrett GTCP-36-300, proving low NOx characteristics during real gas turbine operation, accompanied by the successful definition of safety laws and control system modifications. Further, the Micromix was optimized for the use in annular and can-combustors as well as for fuel-flexibility with hydrogen-methane-mixtures and hydrogen-rich syngas qualities by means of extensive experimental and numerical simulations. In 2020, the latest Micromix application is demonstrated in a commercial 2 MW-class gas turbine can-combustor with full-scale engine operation. This paper discusses the advances in Micromix research over the last three decades.

References

1.
Shum
,
F.
, and
Ziemann
,
J.
,
1996
,
Potential Use of Hydrogen in Air Propulsion
,
Euro-Québec Hydro-Hydrogen Pilot Project (EQHHPP)
,
European Union, Brussels, Belgium
, Report No. 4541-91-11 EL ISP PC.
2.
Westenberger
,
A.
,
2003
, “
Liquid Hydrogen Fuelled Aircraft—System Analysis, CRYOPLANE
,” European Commission, Final Report No.
GRD1-1999-10014
.https://cordis.europa.eu/project/id/G4RD-CT-2000-00192
3.
Suttrop
,
F.
, and
Dorneiski
,
R.
,
1991
, “
Low NOx-Potential of Hydrogen-Fuelled Gas Turbine Engines
,”
1st International Conference on Combutsion Techn. for Clean Environment
,
Vilamoura, Portugal
, Sept. 3–6.
4.
Funke
,
H. H.-W.
,
Börner
,
S.
,
Robinson
,
A.
,
Hendrick
,
P.
, and
Recker
,
E.
,
2010
, “
Low NOx H2 Combustion for Industrial Gas Turbines of Various Power Ranges
,” Fifth International Conference on the Future of Gas Turbine Technology,
Brussels, Belgium
, Oct. 27–28, Paper No.
ETN-2010-42
.https://opus.bibliothek.fh-aachen.de/opus4/frontdoor/index/index/year/2012/docId/4628
5.
Dahl
,
G.
, and
Suttrop
,
F.
,
1998
, “
Engine Control and Low-NOx Combustion for Hydrogen Fuelled Aircraft Gas Turbines
,”
Int. J. Hydrogen Energy
,
23
(
8
), pp.
695
704
.10.1016/S0360-3199(97)00115-8
6.
Dahl
,
G.
, and
Elsing
,
R.
,
1992
, “
Modification of the Fuel System of a Turboshaft Engine From Kerosene to Hydrogen
,”
Proceeding of the Ninth World Hydrogen Energy Conference
,
Paris, France
, June 22–25, pp.
1341
1351
.
7.
Funke
,
H. H.-W.
,
Börner
,
S.
,
Hendrick
,
P.
, and
Recker
,
E.
,
2013
, “
Development and Integration of a Scalable Low NOx Combustion Chamber for a Hydrogen-Fueled Aero Gas Turbine
,”
Prog. Propul. Phys.
,
4
, pp.
357
372
.10.1051/eucass/201304357
8.
Funke
,
H. H.-W.
,
Keinz
,
J.
,
Börner
,
S.
,
Hendrick
,
P.
, and
Elsing
,
R.
,
2016
, “
Testing and Analysis of the Impact on Engine Cycle Parameters and Control System Modifications Using Hydrogen or Methane as Fuel in an Industrial Gas Turbine
,”
Prog. Propul. Phys.
,
8
, pp.
409
426
.10.1051/eucass/201608409
9.
Funke
,
H. H.-W.
,
Börner
,
S.
,
Hendrick
,
P.
, and
Recker
,
E.
,
2011
, “
Modification and Testing of an Engine and Fuel Control System for a Hydrogen Fueled Gas Turbine
,”
Prog. Propul. Phys.
,
2
, pp.
475
486
.10.1051/eucass/201102475
10.
Funke, H
,
H.-W.
,
Börner
,
S.
,
Hendrick
,
P.
, and
Recker
,
E.
,
2010
, “
Control System Modifications for a Hydrogen Fuelled Gas-Turbine
,”
13th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
,
Honolulu, HI
, Apr. 4–7, pp.
665
670
.
11.
Funke
,
H. H.-W.
,
Börner
,
S.
,
Krebs
,
W.
, and
Wolf
,
E.
,
2011
, “
Experimental Characterization of Low NOx Micromix Prototype Combustors for Industrial Gas Turbine Applications
,”
ASME
Paper No. GT2011-45305.10.1115/GT2011-45305
12.
Davies
,
T. W.
, and
Beér
,
J. M.
,
1971
, “
Flow in the Wake of Bluff-Body Flame Stabilizers
,”
Int. Symp. Combust.
,
13
(
1
), pp.
631
638
.10.1016/S0082-0784(71)80065-6
13.
Funke, H
,
H.-W.
,
Keinz
,
J.
,
Börner
,
S.
,
Haj Ayed
,
A.
,
Kusterer
,
K.
,
Tekin
,
N.
,
Kazari
,
M.
,
Kitajima
,
J.
,
Horikawa
,
A.
, and
Okada
,
K.
,
2013
, “
Experimental and Numerical Characterization of the Dry-Low NOx Micromix Hydrogen Combustion Principle at Increased Energy Density for Industrial Hydrogen Gas Turbine Applications
,”
ASME
Paper No. GT2013-94771.10.1115/GT2013-94771
14.
Funke, H
,
H.-W.
,
Börner
,
S.
,
Keinz
,
J.
,
Hendrick
,
P.
, and
Recker
,
E.
,
2012
, “
Low NOx Hydrogen Combustion Chamber for Industrial Gas Turbine Applications
,”
14th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
,
Honolulu, HI
, Feb. 27–Mar. 2, Paper No. ISROMAC-2012-1190.https://www.researchgate.net/publication/288460069_Low_NOx_hydrogen_combustion_chamber_for_industrial_gas_turbine_applications
15.
Funke
,
H. H.-W.
,
Börner
,
S.
,
Keinz
,
J.
,
Kusterer
,
K.
,
Kroninger
,
D.
,
Kitajima
,
J.
,
Kazari
,
M.
, and
Horikama
,
A.
,
2012
, “
Numerical and Experimental Characterization of Low NOx Micromix Combustion Principle for Industrial Hydrogen Gas Turbine Applications
,”
ASME
Paper No. GT2012-69421.10.1115/GT2012-69421
16.
Horikawa
,
A.
,
Okada
,
K.
,
Kazari
,
M.
,
Funke
,
H. H.-W.
,
Keinz
,
J.
,
Kusterer
,
K.
, and
Haj Ayed
,
A.
,
2015
, “
Application of Low NOx Micro-Mix Hydrogen Combustion to Industrial Gas Turbine Combustor and Conceptual Design
,”
Proceedings of the International Gas Turbine Congress
,
Tokyo, Japan
, Nov. 11–15, pp.
141
146
.
17.
Funke
,
H. H.-W.
,
Haj Ayed
,
A.
,
Kusterer
,
K.
,
Keinz
,
J.
,
Kazari
,
M.
,
Kitajima
,
J.
,
Horikawa
,
A.
, and
Okada
,
K.
,
2014
, “
Numerical Study on Increased Energy Density for the DLN Micromix Hydrogen Combustion Principle
,”
ASME
Paper No. GT2014-25848.10.1115/GT2014-25848
18.
Funke
,
H. H.-W.
,
Keinz
,
J.
,
Haj Ayed
,
A.
,
Kazari
,
M.
,
Kitajima
,
J.
,
Horikawa
,
A.
, and
Okada
,
K.
,
2015
, “
Development and Testing of a Low NOx Micromix Combustion Chamber for an Industrial Gas Turbine
,”
Proceedings of the International Gas Turbine Congress
,
Tokyo, Japan
, Nov. 11–15, pp.
131
140
.
19.
Funke
,
H. H.-W.
,
Keinz
,
J.
,
Kusterer
,
K.
,
Haj Ayed
,
A.
,
Kazari
,
M.
,
Kitajima
,
J.
,
Horikawa
,
A.
, and
Okada
,
K.
,
2015
, “
Experimental and Numerical Study on Optimizing the DLN Micromix Hydrogen Combustion Principle for Industrial Gas Turbine Applications
,”
ASME
Paper No. GT2015-42043.10.1115/GT2015-42043
20.
Funke
,
H. H.-W.
,
Beckmann
,
N.
,
Keinz
,
J.
, and
Abanteriba
,
S.
,
2017
, “
Numerical and Experimental Evaluation of a Dual-Fuel Dry-Low-NOx Micromix Combustor for Industrial Gas Turbine Applications
,”
ASME
Paper No. GT2017-64795.10.1115/GT2017-64795
21.
Haj Ayed
,
A.
,
Striegan
,
C. J. D.
,
Kusterer
,
K.
,
Funke
,
H. H.-W.
,
Kazari
,
M.
,
Horikawa
,
A.
, and
Okada
,
K.
,
2017
, “
Automated Design Space Exploration of the Hydrogen Fueled Micromix Combustor Technology
,”
Proceedings of the First Global Power and Propulsion Forum
,
Zurich, Switzerland
, Jan. 16–18, Paper No. GPPF-2017-141.
22.
Funke
,
H. H.-W.
,
Keinz
,
J.
,
Kusterer
,
K.
,
Haj Ayed
,
A.
,
Kazari
,
M.
,
Kitajima
,
J.
,
Horikawa
,
A.
, and
Okada
,
K.
,
2017
, “
Development and Testing of a Low NOx Micromix Combustion Chamber for an Industrial Gas Turbine
,”
Int. J. Gas Turbine, Propul. Power Syst. (JGPP)
,
9
(
1
), pp.
27
36
.10.38036/jgpp.9.1_27
23.
Horikawa
,
A.
,
Okada
,
K.
,
Uto
,
T.
,
Uchiyama
,
Y.
,
Wirsum
,
M.
,
Funke
,
H. H.-W.
, and
Kusterer
,
K.
,
2019
, “
Application of Low NOx Micro-Mix Hydrogen Combustion to 2 MW Class Industrial Gas Turbine Combustor
,”
International Gas Turbine Congress
,
Tokyo, Japan
, Nov. 17–22, Paper No. IGTC-2019-129.
24.
Haj Ayed
,
A.
,
Kusterer
,
K.
,
Funke
,
H. H.-W.
, and
Keinz
,
J.
,
2016
, “
CFD Based Improvement of the DLN Hydrogen Micromix Combustion Technology at Increased Energy Densities
,”
Am. Sci. Res. J. Eng., Technol., Sci. (ASRJETS)
,
26
(
3
), pp.
290
303
.https://asrjetsjournal.org/index.php/American_Scientific_Journal/article/view/2285
25.
Striegan
,
C.
,
Haj Ayed
,
A.
,
Funke
,
H. H.-W.
,
Loechle
,
S.
,
Kazari
,
M.
,
Horikawa
,
A.
,
Okada
,
K.
,
Koga
,
K.
, 2017,
Numerical Combustion and Heat Transfer Simulations and Validation for a Hydrogen Fueled Micromix Test Combustor in Industrial Gas Turbine Applications,
ASME
Paper No. GT2017-64719
.10.1115/GT2017-64719
26.
Haj Ayed
,
A.
,
Kusterer
,
K.
,
Funke
,
H. H.-W.
,
Keinz
,
J.
,
Striegan
,
C.
, and
Bohn
,
D.
,
2015
, “
Improvement Study for the Dry-Low-NOx Hydrogen Micromix Combustion Technology
,”
Propul. Power Res.
,
4
(
3
), pp.
132
140
.10.1016/j.jppr.2015.07.003
27.
Haj Ayed
,
A.
,
Kusterer
,
K.
,
Funke
,
H. H.-W.
,
Keinz
,
J.
,
Striegan
,
C.
, and
Bohn
,
D.
,
2015
, “
Experimental and Numerical Investigations of the Dry-Low-NOx Hydrogen Micromix Combustion Chamber of an Industrial Gas Turbine
,”
Propul. Power Res.
,
4
(
3
), pp.
123
131
.10.1016/j.jppr.2015.07.005
28.
Funke
,
H. H.-W.
,
Beckmann
,
N.
, and
Abanteriba
,
S.
,
2019
, “
An Overview on Dry Low NOx Micromix Combustor Development for Hydrogen-Rich Gas Turbine Applications
,”
Int. J. Hydrogen Energy
,
44
(
13
), pp.
6978
6990
.10.1016/j.ijhydene.2019.01.161
29.
Funke
,
H. H.-W.
,
Dickhoff
,
J.
,
Keinz
,
J.
,
Haj Ayed
,
A.
,
Parente
,
A.
, and
Hendrick
,
P.
,
2014
, “
Experimental and Numerical Study of the Micromix Combustion Principle Applied for Hydrogen and Hydrogen-Rich Syngas as Fuel With Increased Energy Density for Industrial Gas Turbine Applications
,”
Energy Procedia
,
61
, pp.
1736
1739
.10.1016/j.egypro.2014.12.201
30.
Funke
,
H. H.-W.
,
Beckmann
,
N.
,
Keinz
,
J.
, and
Abanteriba
,
S.
,
2018
, “
Comparison of Numerical Combustion Models for Hydrogen and Hydrogen-Rich Syngas Applied for Dry-Low-NOx-Micromix-Combustion
,”
ASME J. Eng. Gas Turbines Power
,
14
0
(
8
), p. 081504.10.1115/1.4038882
31.
Barbir
,
F.
,
2009
, “
Transition to Renewable Energy Systems With Hydrogen as an Energy Carrier
,”
Energy
,
34
(
3
), pp.
308
312
.10.1016/j.energy.2008.07.007
32.
Lopez
,
E.
,
Isorna
,
F.
, and
Rosa
,
F.
,
2007
, “
Optimization of a Solar Hydrogen Storage System: Exergetic Considerations
,”
Int. J. Hydrogen Energy
,
32
(
10–11
), pp.
1537
1541
.10.1016/j.ijhydene.2006.10.032
33.
Tang
,
C.
,
Zhang
,
Y.
, and
Huang
,
Z.
,
2014
, “
Progress in Combustion Investigations of Hydrogen Enriched Hydrocarbons
,”
Renewable Sustainable Energy Rev.
,
30
, pp.
195
216
.10.1016/j.rser.2013.10.005
34.
Funke
,
H. H.-W.
,
Beckmann
,
N.
, and
Abanteriba
,
S.
,
2019
, “
Development and Testing of a FuelFlex Dry-Low-NOx Micromix Combustor for Industrial Gas Turbine Applications With Variable Hydrogen Methane Mixtures
,”
ASME
Paper No. GT2019-90095.10.1115/GT2019-90095
35.
Funke
,
H. H.-W.
,
Beckmann
,
N.
,
Keinz
,
J.
, and
Abanteriba
,
S.
,
2019
, “
Numerical and Experimental Evaluation of a Dual-Fuel Dry-Low-NOx Micromix Combustor for Industrial Gas Turbine Applications
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
1
), p.
011015
.10.1115/1.4041495
36.
Funke
,
H. H.-W.
,
Beckmann
,
N.
, and
Abanteriba
,
S.
,
A.
,
2017
, “
Comparison of Complex Chemistry Mechanisms for Hydrogen Methane Blends Based on the Sandia/Sydney Bluff-Body Flame HM1
,”
11th Asia-Pacific Conference on Combustion
, Sydney,
Australia
, Dec. 10–14, pp.
262
265
.
37.
Kazakov
,
A.
, and
Frenklach
,
M.
, “
Reduced Reaction Sets Based on GRI-Mech 1.2
,” University of California at Berkeley, Berkeley, CA, accessed Nov. 12,
2018
, http://combustion.berkeley.edu/drm/
38.
Striegan
,
C. J. D.
,
Struth
,
B.
,
Dickhoff
,
J.
,
Kusterer
,
K.
,
Funke
,
H. H.-W.
, and
Bohn
,
D.
,
2019
, “
Numerical Simulations of the Micromix DLN Hydrogen Combustion Technology With LES and Comparison to Results of RANS and Experimental Data
,”
International Gas Turbine Congress
,
Tokyo, Japan
, Nov. 17–22.https://opus.bibliothek.fh-aachen.de/opus4/frontdoor/index/index/searchtype/all/start/6/rows/10/facetNumber_doctype/all/docId/9195
39.
Funke
,
H. H.-W.
, and
Beckmann
,
N.
,
2019
, “
Flexible Fuel Operation of a Dry-Low-NOx Micromix Combustor Design With Variable Hydrogen-Methane Mixtures
,”
International Gas Turbine Congress
,
Tokyo, Japan
, Nov. 17–22, Paper No. IGTC-2019-013.https://opus.bibliothek.fh-aachen.de/opus4/frontdoor/index/index/searchtype/all/start/6/rows/10/institutefq/Fachbereich+Luft-+und+Raumfahrttechnik/docId/9194
40.
Tekin
,
N.
,
Ashikaga
,
M.
,
Horikawa
,
A.
, and
Funke
,
H. H.-W.
,
2018
, “
Enhancement of Fuel Flexibility of Industrial Gas Turbines by Development of Innovative Hydrogen Combustion Systems
,”
Gas Energy
, (2), pp.
1
6
.
You do not currently have access to this content.