Abstract

Experiments are performed on a turbulent swirling flame placed inside a vertical tube whose fundamental acoustic mode becomes unstable at higher powers and equivalence ratios. The power, equivalence ratio, fuel composition, and boundary condition of this tube are varied and, at each operating point, the combustion noise is recorded. In addition, short acoustic pulses at the fundamental frequency are supplied to the tube with a loudspeaker and the decay rates of subsequent acoustic oscillations are measured. This quantifies the linear stability of the system at every operating point. Using this data for training, we show that it is possible for a Bayesian ensemble of neural networks to predict the decay rate from a 300 ms sample of the (unpulsed) combustion noise and therefore forecast impending thermoacoustic instabilities. We also show that it is possible to recover the equivalence ratio and power of the flame from these noise snippets, confirming our hypothesis that combustion noise indeed provides a fingerprint of the combustor's internal state. Furthermore, the Bayesian nature of our algorithm enables principled estimates of uncertainty in our predictions, a reassuring feature that prevents it from making overconfident extrapolations. We use the techniques of permutation importance and integrated gradients to understand which features in the combustion noise spectra are crucial for accurate predictions and how they might influence the prediction. This study serves as a first step toward establishing interpretable and Bayesian machine learning techniques as tools to discover informative relationships in combustor data and thereby build trustworthy, robust, and reliable combustion diagnostics.

References

1.
Juniper
,
M. P.
, and
Sujith
,
R.
,
2018
, “
Sensitivity and Nonlinearity of Thermoacoustic Oscillations
,”
Annu. Rev. Fluid Mech.
,
50
(
1
), pp.
661
689
.10.1146/annurev-fluid-122316-045125
2.
Dowling
,
A. P.
, and
Mahmoudi
,
Y.
,
2015
, “
Combustion Noise
,”
Proc. Combust. Inst.
,
35
(
1
), pp.
65
100
.10.1016/j.proci.2014.08.016
3.
Zelditch
,
S.
,
2000
, “
Spectral Determination of Analytic bi-Axisymmetric Plane Domains
,”
Geom. Funct. Anal.
,
10
(
3
), pp.
628
677
.10.1007/PL00001633
4.
Kac
,
M.
,
1966
, “
Can One Hear the Shape of a Drum?
,”
Am. Math. Mon.
,
73
(
4P2
), pp.
1
23
.10.1080/00029890.1966.11970915
5.
Duran
,
I.
,
Moreau
,
S.
,
Nicoud
,
F.
,
Livebardon
,
T.
,
Bouty
,
E.
, and
Poinsot
,
T.
,
2014
, “
Combustion Noise in Modern Aero-Engines
,”
AerospaceLab J.
, (7), pp.
1
11
.10.12762/2014.AL07-05
6.
Putnam
,
A. A.
,
2009
, “
Combustion Roar as Observed in Industrial Furnaces
,”
ASME J. Eng. Power
,
104
(
4
), pp.
867
873
.10.1115/1.3227357
7.
Lighthill
,
M. J.
,
1961
, “
On Sound Generated Aerodynamically
,”
Philos. Trans. R. Soc. A
,
1107
(
211
), pp.
564
587
.
8.
Strahle
,
W. C.
,
1971
, “
On Combustion Generated Noise
,”
J. Fluid Mech.
,
49
(
2
), pp.
399
414
.10.1017/S0022112071002167
9.
Marble
,
F. E.
, and
Candel
,
S. M.
,
1977
, “
Acoustic Disturbance From Gas Non-Uniformities Convected Through a Nozzle
,”
J. Sound Vib.
,
55
(
2
), pp.
225
243
.10.1016/0022-460X(77)90596-X
10.
Strahle
,
W. C.
, and
Shivashankara
,
B. N.
,
1975
, “
A Rational Correlation of Combustion Noise Results From Open Turbulent Premixed Flames
,”
Symp. (Int.) Combust.
,
15
(
1
), pp.
1379
1385
.10.1016/S0082-0784(75)80397-3
11.
Abugov
,
D. I.
, and
Obrezkov
,
O. I.
,
1978
, “
Acoustic Noise in Turbulent Flames
,”
Combust., Explos., Shock Waves
,
14
(
5
), pp.
606
612
.10.1007/BF00789719
12.
Ihme
,
M.
, and
Pitsch
,
H.
,
2012
, “
On the Generation of Direct Combustion Noise in Turbulent Non-Premixed Flames
,”
Int. J. Aeroacoustics
,
11
(
1
), pp.
25
78
.10.1260/1475-472X.11.1.25
13.
Lieuwen
,
T.
,
2005
, “
Online Combustor Stability Margin Assessment Using Dynamic Pressure Data
,”
ASME J. Eng. Gas Turbines Power
,
127
(
3
), pp.
478
482
.10.1115/1.1850493
14.
Gotoda
,
H.
,
Nikimoto
,
H.
,
Miyano
,
T.
, and
Tachibana
,
S.
,
2011
, “
Dynamic Properties of Combustion Instability in a Lean Premixed Gas-Turbine Combustor
,”
Chaos
,
21
(
1
), p.
013124
.10.1063/1.3563577
15.
Nair
,
V.
, and
Sujith
,
R. I.
,
2014
, “
Multifractality in Combustion Noise: Predicting an Impending Combustion Instability
,”
J. Fluid Mech.
,
747
, pp.
635
655
.10.1017/jfm.2014.171
16.
Godavarthi
,
V.
,
Unni
,
V. R.
,
Gopalakrishnan
,
E. A.
, and
Sujith
,
R. I.
,
2017
, “
Recurrence Networks to Study Dynamical Transitions in a Turbulent Combustor
,”
Chaos
,
27
(
6
), p.
063113
.10.1063/1.4985275
17.
Kobayashi
,
H.
,
Gotoda
,
H.
,
Tachibana
,
S.
, and
Yoshida
,
S.
,
2017
, “
Detection of Frequency-Mode-Shift During Thermoacoustic Combustion Oscillations in a Staged Aircraft Engine Model Combustor
,”
J. Appl. Phys.
,
122
(
22
), p.
224904
.10.1063/1.5003912
18.
Mondal
,
S.
,
Ghalyan
,
N. F.
,
Ray
,
A.
, and
Mukhopadhyay
,
A.
,
2019
, “
Early Detection of Thermoacoustic Instabilities Using Hidden Markov Models
,”
Combust. Sci. Technol.
,
191
(
8
), pp.
1309
1336
.10.1080/00102202.2018.1523900
19.
Kobayashi
,
T.
,
Murayama
,
S.
,
Hachijo
,
T.
, and
Gotoda
,
H.
,
2019
, “
Early Detection of Thermoacoustic Combustion Instability Using a Methodology Combining Complex Networks and Machine Learning
,”
Phys. Rev. Appl.
,
11
(
6
), p.
064034
.10.1103/PhysRevApplied.11.064034
20.
Hachijo
,
T.
,
Masuda
,
S.
,
Kurosaka
,
T.
, and
Gotoda
,
H.
,
2019
, “
Early Detection of Thermoacoustic Combustion Oscillations Using a Methodology Combining Statistical Complexity and Machine Learning
,”
Chaos
,
29
(
10
), p.
103123
.10.1063/1.5120815
21.
Nair
,
S.
, and
Lieuwen
,
T.
,
2008
, “
Acoustic Detection of Blowout in Premixed Flames
,”
J. Propul. Power
,
21
(
1
), pp.
32
40
.10.2514/1.5658
22.
Gotoda
,
H.
,
Amano
,
M.
,
Miyano
,
T.
,
Ikawa
,
T.
,
Maki
,
K.
, and
Tachibana
,
S.
,
2012
, “
Characterization of Complexities in Combustion Instability in a Lean Premixed Gas-Turbine Model Combustor
,”
Chaos
,
22
(
4
), p.
043128
.10.1063/1.4766589
23.
Murayama
,
S.
,
Kaku
,
K.
,
Funatsu
,
M.
, and
Gotoda
,
H.
,
2019
, “
Characterization of Dynamic Behavior of Combustion Noise and Detection of Blowout in a Laboratory-Scale Gas-Turbine Model Combustor
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5271
5278
.10.1016/j.proci.2018.07.034
24.
Murray
,
I.
, and
Ghahramani
,
Z.
,
2005
, “
A Note on the Evidence and Bayesian Occam's Razor
,” Gatsby Unit Technical Report, University College London, London, UK, Report No.
GCNU-TR 2005–003
.https://homepages.inf.ed.ac.uk/imurray2/pub/05occam/
25.
Li
,
H.
,
Barnaghi
,
P.
,
Enshaeifar
,
S.
, and
Ganz
,
F.
,
2020
, “
Continual Learning Using Bayesian Neural Networks
,” IEEE Transactions on Neural Networks and Learning Systems,
ePub
, pp.
1
10
.10.1109/TNNLS.2020.3017292
26.
Pearce
,
T.
,
Zaki
,
M.
,
Brintrup
,
A.
,
Anastassacos
,
N.
, and
Neely
,
A.
,
2020
, “
Uncertainty in Neural Networks: Bayesian Ensembling
,”
International Conference on Artificial Intelligence and Statistics, Palermo
, Italy, June 3–5, pp.
234
244
.http://proceedings.mlr.press/v108/pearce20a/pearce20a.pdf
27.
Sundararajan
,
M.
,
Taly
,
A.
, and
Yan
,
Q.
,
2017
, “
Axiomatic Attribution for Deep Networks
,”
Proceedings of the 34th International Conference on Machine Learning
, Sydney, Australia, Aug. 11–15, pp.
3319
3328
.http://proceedings.mlr.press/v70/sundararajan17a.html
28.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Mach. Learn.
,
45
(
1
), pp.
5
32
.10.1023/A:1010933404324
29.
Schumm
,
M.
,
Berger
,
E.
, and
Monkewitz
,
P. A.
,
1994
, “
Self-Excited Oscillations in the Wake of Two-Dimensional Bluff Bodies and Their Control
,”
J. Fluid Mech.
,
271
, pp.
17
53
.10.1017/S0022112094001679
30.
Peng
,
C. K.
,
Buldyrev
,
S. V.
,
Havlin
,
S.
,
Simons
,
M.
,
Stanley
,
H. E.
, and
Goldberger
,
A. L.
,
1994
, “
Mosaic Organization of DNA Nucleotides
,”
Phys. Rev. E
,
49
(
2
), pp.
1685
1689
.10.1103/PhysRevE.49.1685
31.
Neal
,
R. M.
,
1996
,
Bayesian Learning for Neural Networks
(Lecture Notes in Statistics, Vol. 118),
Springer
,
New York
.
32.
Blundell
,
C.
,
Cornebise
,
J.
,
Kavukcuoglu
,
K.
, and
Wierstra
,
D.
,
2015
, “
Weight Uncertainty in Neural Networks
,”
International Conference on Machine Learning
, Lille, France, July 6–11, pp.
1613
1622
.http://proceedings.mlr.press/v37/blundell15.html
33.
Kingma
,
D. P.
, and
Ba
,
J. L.
,
2015
, “
Adam: A Method for Stochastic Gradient Descent
,”
3rd International Conference on Learning Representations
, San Diego, CA, May 7–9.
34.
Ancona
,
M.
,
Ceolini
,
E.
,
Öztireli
,
C.
, and
Gross
,
M.
,
2018
, “
Towards Better Understanding of Gradient-Based Attribution Methods for Deep Neural Networks
,”
International Conference on Learning Representations
, Vancouver, BC, Canada, Apr. 30–May 3.https://arxiv.org/abs/1711.06104
You do not currently have access to this content.