Abstract

Thermoacoustic oscillations in axisymmetric annular combustors are generally coupled by degenerate azimuthal modes, which can be of standing or spinning nature. Symmetry breaking due to the presence of a mean azimuthal flow splits the degenerate thermoacoustic eigenvalues, resulting in pairs of counter-spinning modes with close but distinct frequencies and growth rates. In this study, experiments have been performed using an annular system where the thermoacoustic feedback due to the flames is mimicked by twelve identical electro-acoustic feedback loops. The mean azimuthal flow is generated by fans. We investigate the standing/spinning nature of the oscillations as a function of the azimuthal Mach number for two types of initial states and how the stability of the system is affected by the mean azimuthal flow. It is found that spinning, standing, or mixed modes can be encountered at very low Mach number, but increasing the mean velocity promotes one spinning direction. At sufficiently high Mach number, only spinning modes are observed in the limit cycle oscillations. In some cases, the initial conditions have a significant impact on the final state of the system. It is found that the presence of a mean azimuthal flow increases the acoustic damping. This has a beneficial effect on stability: it often reduces the amplitude of the self-sustained oscillations, and can even suppress them in some cases. However, we observe that the suppression of a mode due to the mean flow may destabilize another one. We discuss our findings in relation to an existing low-order model.

References

1.
Lieuwen
,
T. C.
,
2012
,
Unsteady Combustor Physics
,
Cambridge University Press
,
Cambridge, UK
.
2.
Candel
,
S.
,
2002
, “
Combustion Dynamics and Control: Progress and Challenges
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
1
28
.10.1016/S1540-7489(02)80007-4
3.
Staffelbach
,
G.
,
Gicquel
,
L. Y.
,
Boudier
,
G.
, and
Poinsot
,
T.
,
2009
, “
Large Eddy Simulation of Self-Excited Azimuthal Modes in Annular Combustors
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2909
2916
.10.1016/j.proci.2008.05.033
4.
Wolf
,
P.
,
Staffelbach
,
G.
,
Gicquel
,
L. Y.
,
Müller
,
J.-D.
, and
Poinsot
,
T.
,
2012
, “
Acoustic and Large Eddy Simulation Studies of Azimuthal Modes in Annular Combustion Chambers
,”
Combust. Flame
,
159
(
11
), pp.
3398
3413
.10.1016/j.combustflame.2012.06.016
5.
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Schuller
,
T.
,
Beaunier
,
J.
, and
Candel
,
S.
,
2013
, “
Ignition Dynamics of an Annular Combustor Equipped With Multiple Swirling Injectors
,”
Combust. Flame
,
160
(
8
), pp.
1398
1413
.10.1016/j.combustflame.2013.02.014
6.
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2013
, “
Modal Dynamics of Self-Excited Azimuthal Instabilities in an Annular Combustion Chamber
,”
Combust. Flame
,
160
(
11
), pp.
2476
2489
.10.1016/j.combustflame.2013.04.031
7.
Nygard
,
H. T.
,
Mazur
,
M.
,
Dawson
,
J. R.
, and
Worth
,
N. A.
,
2019
, “
Flame Dynamics of Azimuthal Forced Spinning and Standing Modes in an Annular Combustor
,”
P Combust. Inst.
,
37
(
4
), pp.
5113
5120
.10.1016/j.proci.2018.08.034
8.
Bauerheim
,
M.
,
Cazalens
,
M.
, and
Poinsot
,
T.
,
2015
, “
A Theoretical Study of Mean Azimuthal Flow and Asymmetry Effects on Thermo-Acoustic Modes in Annular Combustors
,”
P Combust. Inst.
,
35
(
3
), pp.
3219
3227
.10.1016/j.proci.2014.05.053
9.
Rouwenhorst
,
D.
,
Hermann
,
J.
, and
Polifke
,
W.
,
2017
, “
Bifurcation Study of Azimuthal Bulk Flow in Annular Combustion Systems With Cylindrical Symmetry Breaking
,”
Int. J. Spray Combust.
,
9
(
4
), pp.
438
451
.10.1177/1756827717715858
10.
Faure-Beaulieu
,
A.
, and
Noiray
,
N.
,
2020
, “
Symmetry Breaking of Azimuthal Waves: Slow-Flow Dynamics on the Bloch Sphere
,”
Phys. Rev. Fluids
,
5
(
2
), p.
023201
.10.1103/PhysRevFluids.5.023201
11.
Fleury
,
R.
,
Sounas
,
D. L.
,
Sieck
,
C. F.
,
Haberman
,
M. R.
, and
Alù
,
A.
,
2014
, “
Sound Isolation and Giant Linear Nonreciprocity in a Compact Acoustic Circulator
,”
Science
,
343
(
6170
), pp.
516
519
.10.1126/science.1246957
12.
Hummel
,
T.
,
Berger
,
F.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2016
, “
Theory and Modeling of Non-Degenerate Transversal Thermoacoustic Limit Cycle Oscillations
,”
Thermoacoustic Instabilities Gas Turbines Rocket Engines: Industry Meets Academia
, Munich, Germany, May 30–June 2, pp.
271
290
.https://www.researchgate.net/publication/304570822_Theory_and_Modeling_of_Non-Degenerate_Transversal_Thermoacoustic_Limit_Cycle_Oscillations
13.
Humbert
,
S. C.
,
Gensini
,
F.
,
Andreini
,
A.
,
Paschereit
,
C. O.
, and
Orchini
,
A.
,
2020
, “
Nonlinear Analysis of Self-Sustained Oscillations in an Annular Combustor Model With Electroacoustic Feedback
,”
Proc. Combust. Inst.
, Epub.10.1016/j.proci.2020.06.154
14.
Noiray
,
N.
, and
Schuermans
,
B.
,
2012
, “
Theoretical and Experimental Investigations on Damper Performance for Suppression of Thermoacoustic Oscillations
,”
J. Sound Vib.
,
331
(
12
), pp.
2753
2763
.10.1016/j.jsv.2012.02.005
15.
Noiray
,
N.
, and
Schuermans
,
B.
,
2013
, “
Deterministic Quantities Characterizing Noise Driven Hopf Bifurcations in Gas Turbine Combustors
,”
J. Nonlinear Mech.
,
50
, pp.
152
163
.10.1016/j.ijnonlinmec.2012.11.008
16.
Moeck
,
J.
,
2010
, “
Analysis, Modeling, and Control of Thermoacoustic Instabilities
,”
Ph.D. thesis
,
Technische Universität Berlin
,
Berlin, Germany
. https://d-nb.info/1010103857/34
17.
Moeck
,
J. P.
,
Paul
,
M.
, and
Paschereit
,
C. O.
,
2010
, “
Thermoacoustic Instabilities in an Annular Rijke Tube
,”
ASME
Paper No. GT2010-23577.10.1115/GT2010-23577
18.
Gelbert
,
G.
,
Moeck
,
J. P.
,
Paschereit
,
C. O.
, and
King
,
R.
,
2012
, “
Feedback Control of Thermoacoustic Modes in an Annular Rijke Tube
,”
Control Eng. Pract.
,
20
(
8
), pp.
770
782
.10.1016/j.conengprac.2012.03.016
19.
Munson
,
B. R.
,
Young
,
D. F.
,
Okiishi
,
T. H.
, and
Huebsch
,
W. W.
,
2009
,
Fundamentals of Fluid Mechanics
,
6
th ed.,
Wiley
,
Hoboken, NJ
.
20.
Palies
,
P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2011
, “
Nonlinear Combustion Instability Analysis Based on the Flame Describing Function Applied to Turbulent Premixed Swirling Flames
,”
Combust. Flame
,
158
(
10
), pp.
1980
1991
.10.1016/j.combustflame.2011.02.012
21.
Gustavsen
,
B.
, and
Semlyen
,
A.
,
1999
, “
Rational Approximation of Frequency Domain Responses by Vector Fitting
,”
IEEE Trans. Power Delivery
,
14
(
3
), pp.
1052
1061
.10.1109/61.772353
22.
Crocco
,
L.
, and
Cheng
,
S.
,
1956
, “
Theory of Combustion Instability in Liquid Propellant Rocket Motors
,”
AGARDograph
No. 8, Butterworths, London.
23.
Dowling
,
A.
,
1997
, “
Nonlinear Self-Excited Oscillations of a Ducted Flame
,”
J. Fluid Mech.
,
346
, pp.
271
290
.10.1017/S0022112097006484
24.
Weng
,
C.
,
Boij
,
S.
, and
Hanifi
,
A.
,
2013
, “
Sound-Turbulence Interaction in Low Mach Number Duct Flow
,”
AIAA
Paper No. 2013-2024.10.2514/6.2013-2024
25.
Blasius
,
P. R. H.
,
1913
, “
Das Aehnlichkeitsgesetz Bei Reibungsvorgängen in Flüssigkeiten
,”
Mitteilungen Über Forschungsarbeiten Auf Dem Gebiete Des Ingenieurwesens
, Vol.
131
, Verein deutscher Ingenieure, eds., Springer, Heidelberg, Germany, pp.
1
41
.
26.
Moeck
,
J. P.
, and
Paschereit
,
C. O.
,
2012
, “
Nonlinear Interactions of Multiple Linearly Unstable Thermoacoustic Modes
,”
Int. J. Spray Combust.
,
4
(
1
), pp.
1
28
.10.1260/1756-8277.4.1.1
You do not currently have access to this content.