Abstract

In this paper, a zero-dimensional (0D) single-zone combustion model was applied for predicting combustion and indicated engine parameters in a spark ignition (SI) engine. Three different shale gas mixtures, methane, and liquefied petroleum gas (LPG) (30% C3H8–70% C4H10), were studied as SI engine fuel. The shale gas compositions included shale gas-1 (86% CH4–14% C2H6), shale gas-2 (81% CH4–10% C2H6–9% N2), and shale gas-3 (58% CH4–20% C2H6–2% C3H8–10% CO2). Experimental results of the SI engine operated with LPG were used in the model verification phase and provided to the validation of the theoretical model. In addition, the operational parameters of the LPG engine were used as the model input values. The results show that shale gas-1 has the potential to be a good alternative fuel to LPG for SI engines. Shale gas-1 has an indicated mean effective pressure (IMEP) value of 5.7–7.3%, which is lower than LPG in the range of ϕ = 0.83–1.2. Furthermore, LPG has a 27.7% higher indicated specific fuel consumption (ISFC) compared to shale gas-1. On the other hand, LPG has 1.2–2.4 units lower indicated thermal efficiency (ITE) values than shale gas-1 in the range of ϕ = 0.83–1.2. However, Methane, Shale gas-2, and Shale gas-3 have 7.55–9.62%, 20.35–20%, 22.19–21.47 lower IMEPs than LPG in the range of ϕ = 0.83–1.2, respectively.

References

1.
Kim
,
Y.
,
Kawahara
,
N.
,
Tomita
,
E.
,
Oshibe
,
H.
, and
Nishikawa
,
K.
,
2015
, “
Effect of Bio-Gas Contents on SI Combustion for a Co-Generation Engine
,”
SAE
Paper No. 2015-01-1946. 10.4271/2015-01-1946
2.
Simsek
,
S.
, and
Uslu
,
S.
,
2020
, “
Investigation of the Impacts of Gasoline, Biogas and LPG Fuels on Engine Performance and Exhaust Emissions in Different Throttle Positions on SI Engine
,”
Fuel
,
279
, p.
118528
.10.1016/j.fuel.2020.118528
3.
Gürbüz
,
H.
, and
Demirtürk
,
S.
,
2020
, “
Investigation of Dual-Fuel Combustion by Different Port Injection Fuels (Neat Ethanol and E85) in a DE95 Diesel/Ethanol Blend Fuelled CI Engine
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
122306
.10.1115/1.4047328
4.
Singh
,
A. P.
,
Agarwal
,
A. K.
,
Agarwal
,
R. A.
,
Dhar
,
A.
, and
Shukla
,
M. K.
,
2018
, “
Introduction of Alternative Fuels, Prospects of Alternative Transportation Fuels
,”
Energy, Environment, and Sustainability
,
Springer
,
Singapore
, pp.
3
6
.
5.
Montoya
,
J. P. G.
,
Amell
,
A. A.
, and
Olsen
,
D. B.
,
2019
, “
Operation of a Spark Ignition Engine With High Compression Ratio Using Biogas Blended With Natural Gas, Propane, and Hydrogen
,”
ASME J. Eng. Gas Turbines Power
,
141
(
5
), p.
051006
.10.1115/1.4041755
6.
Xu
,
H.
, and
LaPointe
,
L. A.
,
2016
, “
Engine Capability Prediction for Spark Ignited Engine Fueled With Syngas
,”
ASME J. Eng. Gas Turbines Power
,
138
(
10
), p.
102812
.10.1115/1.4033183
7.
Pipitone
,
E.
,
Beccari
,
S.
, and
Genchi
,
G.
,
2017
, “
Supercharging the Double-Fueled Spark Ignition Engine: Performance and Efficiency
,”
ASME J. Eng. Gas Turbines Power
,
139
(
10
), p.
102809
.10.1115/1.4036514
8.
Gürbüz
,
H.
,
Şöhret
,
Y.
, and
Akçay
,
H.
,
2019
, “
Environmental and Enviroeconomic Assessment of an LPG Fueled SI Engine at Partial Load
,”
J. Environ. Manage.
,
241
, pp.
631
636
.10.1016/j.jenvman.2019.02.113
9.
Gupta
,
S. K.
, and
Mittal
,
M.
,
2019
, “
Effect of Biogas Composition Variations on Engine Characteristics Including Operational Limits of a Spark-Ignition Engine
,”
ASME J. Eng. Gas Turbines Power
,
141
(
10
), p.
101002
.10.1115/1.4044195
10.
Li
,
H.
,
Gatts
,
T.
,
Liu
,
S.
,
Wayne
,
S.
,
Clark
,
N.
, and
Mather
,
D.
,
2018
, “
An Experimental Investigation on the Combustion Process of a Simulated Turbocharged Spark Ignition Natural Gas Engine Operated on Stoichiometric Mixture
,”
ASME J. Eng. Gas Turbines Power
,
140
(
9
), p.
091504
.10.1115/1.4038692
11.
Jagadish
,
C.
, and
Gumtapure
,
V.
,
2020
, “
Experimental Studies on Cyclic Variations in a Single Cylinder Diesel Engine Fuelled With Raw Biogas by Dual Mode of Operation
,”
Fuel
,
266
, p.
117062
.10.1016/j.fuel.2020.117062
12.
Kim
,
G. T.
,
Seo
,
B. H.
,
Lee
,
W. J.
,
Park
,
J.
,
Kim
,
M. K.
, and
Lee
,
S. M.
,
2017
, “
Effects of Applying Non-Thermal Plasma on Combustion Stability and Emissions of NOx and CO in a Model Gas Turbine Combustor
,”
Fuel
,
194
, pp.
321
328
.10.1016/j.fuel.2017.01.033
13.
Lan
,
Y.
,
Yang
,
Z.
,
Wang
,
P.
,
Yan
,
Y.
,
Zhang
,
L.
, and
Ran
,
J.
,
2019
, “
A Review of Microscopic Seepage Mechanism for Shale Gas Extracted by Supercritical CO2 Flooding
,”
Fuel
,
238
, pp.
412
424
.10.1016/j.fuel.2018.10.130
14.
Wang
,
S.
,
Pomerantz
,
A. E.
,
Xu
,
W.
,
Lukyanov
,
A. A.
,
Kleinberg
,
R. L.
, and
Wu
,
Y. S.
,
2017
, “
The Impact of Kerogen Properties on Shale Gas Production: A Reservoir Simulation Sensitivity Analysis
,”
J. Nat. Gas. Sci. Eng.
,
48
, pp.
13
23
.10.1016/j.jngse.2017.06.009
15.
Etiope
,
G.
,
Drobniak
,
A.
, and
Schimmelmann
,
A.
,
2013
, “
Natural Seepage of Shale Gas and the Origin of Eternal Flames in the Northern Appalachian Basin, USA
,”
Mar. Pet. Geol.
,
43
, pp.
178
186
.10.1016/j.marpetgeo.2013.02.009
16.
Speight
,
J. G.
,
2013
, “
Chapter 4-Shale Gas Properties and Processing
,”
Shale Gas Production Processes
,
J. G.
Speight
, ed.,
Gulf Professional Publishing
,
Boston, MA
, pp.
101
119
.
17.
Vargas
,
A. C.
,
Arrieta
,
A. A.
, and
Arrieta
,
C. E.
,
2016
, “
Combustion Characteristics of Several Typical Shale Gas Mixtures
,”
J. Nat. Gas. Sci. Eng.
,
33
, pp.
296
304
.10.1016/j.jngse.2016.03.039
18.
Restuccia
,
F.
,
Ptak
,
N.
, and
Rein
,
G.
,
2017
, “
Self-Heating Behavior and Ignition of Shale Rock
,”
Combust. Flame
,
176
, pp.
213
219
.10.1016/j.combustflame.2016.09.025
19.
Chen
,
W.
,
Zhou
,
Y.
,
Yang
,
L.
,
Zhao
,
N.
, and
Lei
,
Y.
,
2018
, “
Experimental Study of Low-Temperature Combustion Characteristics of Shale Rocks
,”
Combust. Flame
,
194
, pp.
285
295
.10.1016/j.combustflame.2018.04.033
20.
Shuai
,
L.
,
Zhong
,
W.
,
Kun
,
J. H.
, and
Lin
,
C.
,
2019
, “
Research on the Influence of Hydrogen and Oxygen Fuel Obtained From Water Electrolysis on Combustion Stability of Shale Gas Engines
,”
Int. J. Automot. Technol.
,
20
(
1
), pp.
119
125
.10.1007/s12239-019-0011-1
21.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hills
,
New York
.
22.
Payri
,
F.
,
Olmeda
,
P.
,
Martin
,
J.
, and
Garcia
,
A.
,
2011
, “
A Complete 0-D Thermodynamic Predictive Model for Direct Injection Diesel Engines
,”
Appl. Energy
,
88
(
12
), pp.
4632
4641
.10.1016/j.apenergy.2011.06.005
23.
Yıldız
,
M.
, and
Ceper
,
B. A.
,
2017
, “
Zero-Dimensional Single Zone Engine Modeling of an SI Engine Fuelled With Methane and Methane-Hydrogen Blend Using Single and Double Wiebe Function: A Comparative Study
,”
Int. J. Hydrogen Energy
,
42
(
40
), pp.
25756
25765
.10.1016/j.ijhydene.2017.07.016
24.
Ngayihi Abbe
,
C. V.
,
Nzengwa
,
R.
,
Danwe
,
R.
,
Ayissi
,
Z. M.
, and
Obonou
,
M.
,
2015
, “
A Study on the 0-D Phenomenological Model for Diesel Engine Simulation: Application to Combustion of Neem Methyl Esther Biodiesel
,”
Energy Convers. Manage.
,
89
(
89
), pp.
568
576
.10.1016/j.enconman.2014.10.005
25.
Yeliana
,
Y.
,
Cooney
,
C.
,
Worm
,
J.
,
Michalek
,
D. J.
, and
Naber
,
J. D.
,
2011
, “
Estimation of Double-Wiebe Function Parameters Using Least Square Method for Burn Durations of Ethanol-Gasoline Blends in Spark Ignition Engine Over Variable Compression Ratios and EGR Levels
,”
Appl. Energy
,
31
(
14–15
), pp.
2213
2220
.10.1016/j.applthermaleng.2011.01.040
26.
Poetsch
,
C.
, and
Katrasnik
,
T.
,
2016
, “
Crank-Angle Resolved Modeling of Fuel Injection, Combustion and Emission Formation for Engine Optimization and Calibration on Real-Time Systems
,”
SAE
Paper No. 2016-01-0558. 10.4271/2016-01-0558
27.
Gürbüz
,
H.
,
Akçay
,
İ. H.
, and
Buran
,
D.
,
2014
, “
An Investigation on Effect of in-Cylinder Swirl Flow on Performance, Combustion and Cyclic Variations in Hydrogen Fuelled Spark Ignition Engine
,”
J. Energy Inst.
,
87
(
1
), pp.
1
10
.10.1016/j.joei.2012.03.001
28.
Gürbüz
,
H.
,
2016
, “
Parametrical Investigation of Heat Transfer With a Fast Response Thermocouple in a SI Engine
,”
J. Energy Eng.
,
142
(
4
), p.
04016014
.10.1061/(ASCE)EY.1943-7897.0000350
29.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2020
, “
Investigation of Multistage Combustion Inside a Heavy-Duty Natural-Gas Spark-Ignition Engine Using 3D CFD Simulations and the Wiebe-Function Combustion Model
,”
ASME J. Eng. Gas Turbines Power
, 142(10), pp. 101012.10.1115/1.4045869
30.
Bhatti
,
S. S.
,
Verma
,
S.
, and
Tyagi
,
S. K.
,
2019
, “
Energy and Exergy-Based Performance Evaluation of Variable Compression Ratio Spark Ignition Engine Based on Experimental Work
,”
Therm. Sci. Eng. Prog.
,
9
, pp.
332
339
.10.1016/j.tsep.2018.12.006
31.
Şöhret
,
Y.
,
Gürbüz
,
H.
, and
Akçay
,
İ. H.
,
2019
, “
Energy and Exergy Analyses of a Hydrogen Fueled SI Engine: Effect of Ignition Timing and Compression Ratio
,”
Energy
,
175
, pp.
410
422
.10.1016/j.energy.2019.03.091
32.
Blair
,
G. P.
,
1999
,
Design and Simulation of Four-Stroke Engines
,
SAE International Publish
,
Warrendale, PA
.
33.
Galindo
,
J.
,
Climent
,
H.
,
Plá
,
B.
, and
Jiménez
,
V. D.
,
2011
, “
Correlations for Wiebe Function Parameters for Combustion Simulation in Two-Stroke Small Engines
,”
Appl. Therm. Eng.
,
31
(
6–7
), pp.
1190
1199
.10.1016/j.applthermaleng.2010.12.020
34.
Heywood
,
J. B.
,
Higgins
,
J. M.
,
Watts
,
P. A.
, and
Tabaczynski
,
R. J.
,
1979
, “
Development and Use of a Cycle Simulation to Predict SI Engine Efficiency and NOx Emissions
,”
SAE
Paper No. 790291. 10.4271/790291
35.
Ghojel
,
J.
,
2010
, “
Review of the Development and Applications of the Wiebe Function: A Tribute to the Contribution of Ivan Wiebe to Engine Research
,”
Int. J. Engıne. Res.
,
11
(
4
), pp.
297
312
.10.1243/14680874JER06510
36.
Hareesh
,
K.
,
Teja
,
N. R.
, and
Reddy
,
B. K.
,
2014
, “
Computer Simulation of Compression Ignition Engine Through MATLAB
,”
Int. J. Res. Appl. Sci. Eng.
,
2
, pp.
1
17
.https://www.slideshare.net/IaetsdIaetsd/iaetsd-computer-simulation-of-compression-ignition-engine-through-matlab
37.
Yasar
,
H.
,
Soyhan
,
H. S.
,
Walmsley
,
H.
,
Head
,
B.
, and
Sorusbay
,
C.
,
2008
, “
Double-Wiebe Function: An Approach for Single-Zone HCCI Engine Modelling
,”
Appl. Therm. Eng.
,
28
(
11–12
), pp.
1284
1290
.10.1016/j.applthermaleng.2007.10.014
38.
Krieger
,
R. B.
, and
Borman
,
G. L.
,
1967
,
The Computation of Apparent Heat Release for Internal Combustion Engines
,
ASME Publisher
,
New York
.
39.
Fox
,
J.
,
Cheng
,
W.
, and
Heywood
,
J.
, “
A Model for Predicting Residual Gas Fraction in Spark-Ignition Engines
,”
SAE
Paper No. 931025. 10.4271/931025
40.
EUR-Lex,
2013
, “
Regulation No.49-Rev.6.—Uniform Provisions Concerning the Measures to Be Taken Against the Emission of Gaseous and Particulate Pollutants From Compression-Ignition Engines and Positive Ignition Engines for Use in Vehicles
,”
Official Journal of the European Union
, Document 42013X0624(01) OJL 171, pp.
1
390
.https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A42013X0624%2801%29
41.
Bosschaart
,
K. J.
, and
De-Goey
,
L.
,
2004
, “
The Laminar Burning Velocity of Flames Propagating in Mixtures of Hydrocarbons and Air Measured With the Heat Flux Method
,”
Combust. Flame
,
136
(
3
), pp.
261
269
.10.1016/j.combustflame.2003.10.005
42.
Cardona
,
C.
,
Amell
,
A.
, and
Burbano
,
H.
,
2013
, “
Laminar Burning Velocity of Natural Gas/Syngas-Air Mixture
,”
Dyna
,
80
(
180
), pp.
136
143
.http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0012-73532013000400017#:~:text=In%20this%20case%2C%20the%20maximum,s%20at%20f%20%3D%201.8
43.
Lindström
,
F.
,
Ångström
,
H. E.
,
Kalghatgi
,
G.
, and
Möller
,
C. E.
,
2016
, “
An Empirical SI Combustion Model Using Laminar Burning Velocity Correlations
,”
SAE
Paper No. 2005-01-2106. 10.4271/2005-01-2106
44.
Metghalchi
,
M.
, and
Keck
,
J.
,
1980
, “
Laminar Burning Velocity of Propane-Air Mixtures at High Temperature and Pressure
,”
Combust. Flame
,
38
, pp.
143
154
.10.1016/0010-2180(80)90046-2
45.
Rassweiler
,
G. M.
, and
Withrow
,
L.
,
1938
, “
Motion Pictures of Engine Flames Correlated With Pressure Cards
,”
SAE
Paper No. 800131.10.4271/800131
46.
Matekunas
,
F. A.
,
1983
, “
Modes and Measures of Cyclic Combustion Variability
,”
SAE
Paper No. 830337. 10.4271/830337
47.
Gürbüz
,
H.
,
2017
, “
Experimental Evaluation of Combustion Parameters With an Ion-Current Sensor Integrated to a Fast Response Thermocouple in a SI-Engine
,”
J. Energy Eng.
,
143
(
2
), p.
040160461
.10.1061/(ASCE)EY.1943-7897.0000401
48.
Köse
,
Ş.
,
2019
, “
Development of a Theoretical Combustion Model of Shale-Gas Use as Fuel in an SI Engine
,” Master thesis,
Süleyman Demirel University Graduate-School of Natural and Applied Sciences
,
Isparta, Turkey
(in Turkish).
You do not currently have access to this content.