Abstract

This paper presents the numerical investigations of amplitude-dependent stability behavior of thermoacoustic oscillations at screech level frequencies in a lean-premixed, atmospheric, swirl-stabilized, lab-scale gas turbine combustor. A hybrid computational fluid dynamics/computational aeroacoustics (CFD/CAA) approach is applied to individually compute thermoacoustic damping and driving rates for various acoustic amplitude levels at the combustors' first transversal (T1) eigenfrequency. Harmonically forced CFD simulations with the unsteady Reynolds-averaged Navier–Stokes (URANS) equations mimic the real combustor's rotating T1 eigenmode. A slow and monotonous increase of the forcing amplitude over time allows observation of the amplitude-dependent flow field and flame evolution. In accordance with measured OH*-chemiluminescence images, a pulsation amplitude-dependent flame contraction is reproduced in the CFD simulations, where acoustically induced backflow at the combustion chamber inlet is identified as the root cause of this phenomenon. At several amplitude levels, period-averaged flow fields are then denoted as reference states, which serve as inputs for the CAA part. There, eigenfrequency simulations with linearized flow equations are performed with the finite element method. The outcomes are damping and driving rates as a response to the amplitude dependency of the mean flow field, which combined give the net thermoacoustic growth rate. It is found that driving due to flame-acoustics interactions only governs a weak amplitude dependency, which agrees with prior, experimentally based studies at the authors' institute. This disqualifies the perception of heat release saturation as the root cause for limit-cycle oscillations—at least in this high-frequency thermoacoustic system. Instead, significantly increased dissipation due to the interaction of acoustically induced vorticity perturbations with the mean flow is identified, which may explain the formation of a limit cycle.

References

1.
Dowling
,
A. P.
,
1997
, “
Nonlinear Self-Excited Oscillations of a Ducted Flame
,”
J. Fluid Mech.
,
346
, pp.
271
290
.10.1017/S0022112097006484
2.
Bloxsidge
,
G. J.
,
Dowling
,
A. P.
, and
Langhorne
,
P. J.
,
1988
, “
Reheat Buzz: An Acoustically Coupled Combustion Instability. Part 2. Theory
,”
J. Fluid Mech.
,
193
(
1
), pp.
445
473
.10.1017/S0022112088002216
3.
Langhorne
,
P. J.
,
1988
, “
Reheat Buzz: An Acoustically Coupled Combustion Instability. Part 1. Experiment
,”
J. Fluid Mech.
,
193
(
1
), pp.
417
443
.10.1017/S0022112088002204
4.
Lieuwen
,
T.
, and
Neumeier
,
Y.
,
2002
, “
Nonlinear Pressure-Heat Release Transfer Function Measurements in a Premixed Combustor
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
99
105
.10.1016/S1540-7489(02)80017-7
5.
Balachandran
,
R.
,
Ayoola
,
B.
,
Kaminski
,
C.
,
Dowling
,
A.
, and
Mastorakos
,
E.
,
2005
, “
Experimental Investigation of the Nonlinear Response of Turbulent Premixed Flames to Imposed Inlet Velocity Oscillations
,”
Combust. Flame
,
143
(
1–2
), pp.
37
55
.10.1016/j.combustflame.2005.04.009
6.
Noiray
,
N.
,
Bothien
,
M.
, and
Schuermans
,
B.
,
2011
, “
Investigation of Azimuthal Staging Concepts in Annular Gas Turbines
,”
Combust. Theory Modell.
,
15
(
5
), pp.
585
606
.10.1080/13647830.2011.552636
7.
Ghirardo
,
G.
, and
Juniper
,
M. P.
,
2013
, “
Azimuthal Instabilities in Annular Combustors: Standing and Spinning Modes
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
469
(
2157
), p.
20130232
.10.1098/rspa.2013.0232
8.
Moeck
,
J. P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2019
, “
Nonlinear Thermoacoustic Mode Synchronization in Annular Combustors
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5343
5350
.10.1016/j.proci.2018.05.107
9.
Hummel
,
T.
,
Hammer
,
K.
,
Romero
,
P.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2017
, “
Low-Order Modeling of Nonlinear High-Frequency Transversal Thermoacoustic Oscillations in Gas Turbine Combustors
,”
ASME J. Eng. Gas Turbines Power
,
139
(
7
), p.
071503
.10.1115/1.4035529
10.
Bellows
,
B. D.
,
Bobba
,
M. K.
,
Seitzman
,
J. M.
, and
Lieuwen
,
T.
,
2007
, “
Nonlinear Flame Transfer Function Characteristics in a Swirl-Stabilized Combustor
,”
ASME J. Eng. Gas Turbines Power
,
129
(
4
), pp.
954
961
.10.1115/1.2720545
11.
Berger
,
F.
,
Hummel
,
T.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2018
, “
Pulsation-Amplitude-Dependent Flame Dynamics of High-Frequency Thermoacoustic Oscillations in Lean-Premixed Gas Turbine Combustors
,”
ASME J. Eng. Gas Turbines Power
,
140
(
4
), p.
041507
.10.1115/1.4038036
12.
Berger
,
F.
,
Hummel
,
T.
,
Hertweck
,
M.
,
Kaufmann
,
J.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2017
, “
High-Frequency Thermoacoustic Modulation Mechanisms in Swirl-Stabilized Gas Turbine Combustors—Part I: Experimental Investigation of Local Flame Response
,”
ASME J. Eng. Gas Turbines Power
,
139
(
7
), p. 071501.10.1115/1.4035591
13.
Hummel
,
T.
,
Berger
,
F.
,
Hertweck
,
M.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2017
, “
High-Frequency Thermoacoustic Modulation Mechanisms in Swirl-Stabilized Gas Turbine Combustors—Part II: Modeling and Analysis
,”
ASME J. Eng. Gas Turbines Power
,
139
(
7
), p.
071502
.10.1115/1.4035592
14.
Hofmeister
,
T.
,
Hummel
,
T.
,
Berger
,
F.
,
Klarmann
,
N.
, and
Sattelmayer
,
T.
,
2020
, “
Elimination of Numerical Damping in the Stability Analysis of Non-Compact Thermoacoustic Systems With Linearized Euler Equations
,”
ASME
Paper No. GT2020-16051.10.1115/GT2020-16051
15.
Klarmann
,
N.
,
Sattelmayer
,
T.
,
Geng
,
W.
,
Zoller
,
B. T.
, and
Magni
,
F.
,
2016
, “
Impact of Flame Stretch and Heat Loss on Heat Release Distributions in Gas Turbine Combustors: Model Comparison and Validation
,”
ASME
Paper No. GT2016-57625.10.1115/GT2016-57625
16.
Hummel
,
T.
,
Berger
,
F.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2016
, “
Theory and Modeling of Non-Degenerate Transversal Thermoacoustic Limit Cycle Oscillations
,”
Proceedings of the Inernational Symposium on Thermoacoustic Instabilities in Gas Turbines and Rocket Engines
: Industry meets Academia, Munich, Germany, May 30–June 2.https://www.researchgate.net/publication/304570822_Theory_and_Modeling_of_Non-Degenerate_Transversal_Thermoacoustic_Limit_Cycle_Oscillations
17.
Hummel
,
T.
,
2019
, “
Modeling and Analysis of High-Frequency Thermoacoustic Oscillations in Gas Turbine Combustion Chambers
,” Ph.D. thesis, Technical University of Munich, Lehrstuhl für Thermodynamik, Munich, Germany.
18.
Romero Vega
,
P.
,
Hofmeister
,
T.
,
Heilmann
,
G.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2020
, “
Isentropic Formulation of the Linearized Euler Equations for Perfectly Premixed Combustion Systems
,”
ASME
Paper No. GT2021-60055.10.1115/GT2021-60055
19.
Strobio Chen
,
L.
,
Bomberg
,
S.
, and
Polifke
,
W.
,
2016
, “
Propagation and Generation of Acoustic and Entropy Waves Across a Moving Flame Front
,”
Combust. Flame
,
166
, pp.
170
180
.10.1016/j.combustflame.2016.01.015
20.
Noiray
,
N.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2008
, “
A Unified Framework for Nonlinear Combustion Instability Analysis Based on the Flame Describing Function
,”
J. Fluid Mech.
,
615
, pp.
139
167
.10.1017/S0022112008003613
21.
Ewert
,
R.
, and
Schröder
,
W.
,
2003
, “
Acoustic Perturbation Equations Based on Flow Decomposition Via Source Filtering
,”
J. Comput. Phys.
,
188
(
2
), pp.
365
398
.10.1016/S0021-9991(03)00168-2
22.
Searby
,
G.
,
Habiballah
,
M.
,
Nicole
,
A.
, and
Laroche
,
E.
,
2008
, “
Prediction of the Efficiency of Acoustic Damping Cavities
,”
J. Propul. Power
,
24
(
3
), pp.
516
523
.10.2514/1.32325
23.
Howe
,
M. S.
,
1979
, “
Attenuation of Sound in a Low Mach Number Nozzle Flow
,”
J. Fluid Mech.
,
91
(
2
), pp.
209
229
.10.1017/S0022112079000124
24.
Cantrell
,
R. H.
, and
Hart
,
R. W.
,
1964
, “
Interaction Between Sound and Flow in Acoustic Cavities: Mass, Momentum, and Energy Considerations
,”
J. Acoust. Soc. Am.
,
36
(
4
), pp.
697
706
.10.1121/1.1919047
You do not currently have access to this content.