Abstract

Due to an increase in the power generation from renewable sources, steam and gas turbines will be required to adapt for more flexible operations with frequent start-ups and shut-downs to provide load leveling capacity. During shut-down regimes, mixed convection takes place with natural convection dominance depending on the operating conditions in turbine cavities. Buoyant flows inside the turbine that are responsible for nonuniform cooling leading to thermal stresses and compromise clearances directly limits the operational flexibility. Computational fluid dynamics (CFD) tools are required to predict the flow field during these regimes since direct measurements are extremely difficult to conduct due to the harsh operating conditions. Natural convection with the presence of cross-flow -mixed convection has not been extensively studied to provide detailed measurements. Since the literature lacks of research on such flows with real engine representative operating conditions for CFD validation, the confidence in numerical predictions is rather inadequate. This paper presents a novel experimental facility that has been designed and commissioned to perform very accurate unsteady temperature and flow field measurements in a simplified turbine casing geometry. The facility is capable of reproducing a wide range of Richardson, Grashof, and Reynolds numbers which are representative of engine realistic operating conditions. In addition, high fidelity, wall resolved large eddy simulation (LES) with dynamic Smagorinsky subgrid scale model has been performed. The flow field as well as heat transfer characteristics have been accurately captured with LES. Finally, the inadequacy of Reynolds-averaged Navier–Stokes (RANS) for the mixed type of flows has been highlighted.

References

1.
Beckmann
,
W.
,
1931
, “
Die Wärmeübertragung in Zylindrischen Gasschichten Bei Natürlicher Konvektion
,”
Forsch. Gebiet Ing A
,
2
(
5
), pp.
165
178
.10.1007/BF02578801
2.
Liu
,
C.
,
Mueller
,
W. K.
, and
Landis
,
F.
,
1961
, “
Natural Convection Heat Transfer in Long Horizontal Cylindrical Annuli
,”
ASME Int. Dev. Heat Transfer,
5, Paper No. 117, pp.
976
984
.
3.
Grigull
,
U.
, and
Hauf
,
W.
,
1966
, “
Natural Convection in Horizontal Cylindrical Annuli
,” 2, pp.
182
195
.
4.
Kuehn
,
T.
, and
Goldstein
,
R.
,
1976
, “
Correlating Equations for Natural Convection Heat Transfer Between Horizontal Circular Cylinders
,”
Int. J. Heat Mass Transfer
,
19
(
10
), pp.
1127
1134
.10.1016/0017-9310(76)90145-9
5.
Fahy
,
D. D.
,
Ireland
,
P. T.
,
Lewis
,
L. V.
, and
Raya
,
E.
,
2018
, “
A Novel Experimental Technique for Investigating Natural Convective Heat Transfer in a Gas Turbine Annulus
,”
ASME
Paper No. GT2018-76685.10.1115/GT2018-76685
6.
Shibayama
,
S.
, and
Mashimo
,
Y.
,
1968
, “
Natural Convection Heat Transfer in Horizontal Concentric Cylindrical Annuli
,”
JSME Nat. Symp.
, 196, pp.
7
20
.
7.
Powe
,
R. E.
,
Carley
,
C. T.
, and
Carruth
,
S. L.
,
1971
, “
A Numerical Solution for Natural Convection in Cylindrical Annuli
,”
ASME J. Heat Transfer-Trans. ASME
,
93
(
2
), pp.
210
220
.10.1115/1.3449790
8.
Van de Sande
,
E.
, and
Hamer
,
B.
,
1979
, “
Steady and Transient Natural Convection in Enclosures Between Horizontal Circular Cylinders (Constant Heat Flux)
,”
Int. J. Heat Mass Transfer
,
22
(
3
), pp.
361
370
.10.1016/0017-9310(79)90002-4
9.
Farouk
,
B.
, and
GüC¸Eri
,
S. I.
,
1982
, “
Laminar and Turbulent Natural Convection in the Annulus Between Horizontal Concentric Cylinders
,”
ASME J. Heat Transfer-Trans. ASME
,
104
(
4
), pp.
631
636
.10.1115/1.3245178
10.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
, 3(2), pp.
269
289
.10.1016/0045-7825(74)90029-2
11.
Fukuda
,
K.
,
Miki
,
Y.
, and
Hasegawa
,
S.
,
1990
, “
Analytical and Experimental Study on Turbulent Natural Convection in a Horizontal Annulus
,”
Int. J. Heat Mass Transfer
,
33
(
4
), pp.
629
639
.10.1016/0017-9310(90)90162-N
12.
Fukuda
,
K.
,
Miki
,
Y.
,
Taniguchi
,
N.
,
Morita
,
K.
, and
Hasegawa
,
S.
,
1991
, “
Direct Simulation and Large Eddy Simulation of Turbulent Natural Convection in Horizontal Annulus
,”
Memoirs Faculty Eng.
,
51
(
4
), pp.
32
49
.
13.
Desai
,
C.
, and
Vafai
,
K.
,
1994
, “
An Investigation and Comparative Analysis of Two-and Three-Dimensional Turbulent Natural Convection in a Horizontal Annulus
,”
Int. J. Heat Mass Transfer
,
37
(
16
), pp.
2475
2504
.10.1016/0017-9310(94)90287-9
14.
Miki
,
Y.
,
Fukuda
,
K.
, and
Taniguchi
,
N.
,
1993
, “
Large Eddy Simulation of Turbulent Natural Convection in Concentric Horizontal Annuli
,”
Int. Journal Heat Fluid Flow
,
14
(
3
), pp.
210
216
.10.1016/0142-727X(93)90050-W
15.
Kotake
,
S.
, and
Hattori
,
N.
,
1985
, “
Combined Forced and Free Convection Heat Transfer for Fully-Developed Laminar Flow in Horizontal Annuli
,”
Int. J. Heat Mass Transfer
,
28
(
11
), pp.
2113
2120
.10.1016/0017-9310(85)90105-X
16.
Ciampi
,
M.
,
Faggiani
,
S.
,
Grassi
,
W.
,
Tuoni
,
G.
, and
Incropera
,
F.
,
1987
, “
Mixed Convection Heat Transfer in Horizontal, Concentric Annuli for Transitional Flow Conditions
,”
Int. J. Heat Mass Transfer
,
30
(
5
), pp.
833
841
.10.1016/0017-9310(87)90003-2
17.
Mohammed
,
H.
,
Campo
,
A.
, and
Saidur
,
R.
,
2010
, “
Experimental Study of Forced and Free Convective Heat Transfer in the Thermal Entry Region of Horizontal Concentric Annuli
,”
Int. Commun. Heat Mass Transfer
,
37
(
7
), pp.
739
747
.10.1016/j.icheatmasstransfer.2010.04.007
18.
Ndenguma
,
D. D.
,
Dirker
,
J.
, and
Meyer
,
J. P.
,
2017
, “
Transitional Flow Regime Heat Transfer and Pressure Drop in an Annulus With Non-Uniform Wall Temperatures
,”
Int. J. Heat Mass Transfer
,
108
, pp.
2239
2252
.10.1016/j.ijheatmasstransfer.2017.01.022
19.
Morel
,
T.
,
1975
, “
Comprehensive Design of Axisymmetric Wind Tunnel Contractions
,”
ASME J. Fluids Eng.
,
97
(
2
), pp.
225
233
.10.1115/1.3447255
20.
Morel
,
T.
,
1977
, “
Design of Two-Dimensional Wind Tunnel Contractions
,”
ASME J. Fluids Eng.
,
99
(
2
), pp.
371
377
.10.1115/1.3448764
21.
Fang
,
F.-M.
,
1997
, “
A Design Method for Contractions With Square End Sections
,”
ASME J. Fluids Eng.
,
119
(
2
), pp.
454
458
.10.1115/1.2819156
22.
Tagawa
,
M.
, and
Ohta
,
Y.
,
1997
, “
Two-Thermocouple Probe for Fluctuating Temperature Measurement in Combustion-Rational Estimation of Mean and Fluctuating Time Constants
,”
Combust. Flame
,
109
(
4
), pp.
549
560
.10.1016/S0010-2180(97)00044-8
23.
Brohez
,
S.
,
Delvosalle
,
C.
, and
Marlair
,
G.
,
2004
, “
A Two-Thermocouples Probe for Radiation Corrections of Measured Temperatures in Compartment Fires
,”
Fire Saf. J.
,
39
(
5
), pp.
399
411
.10.1016/j.firesaf.2004.03.002
24.
Kim
,
C. S.
,
Hong
,
S.-D.
,
Seo
,
D.-U.
, and
Kim
,
Y.-W.
,
2010
, “
Temperature Measurement With Radiation Correction for Very High Temperature Gas
,” J. Korean Soc. Precis. Eng., 27(8), pp.
99
104
.
25.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
26.
ANSYS,
2020
,
ANSYS Fluent Theory Guide 2020 R1
,
ANSYS
, Canonsburg, PA.
27.
Lilly
,
D. K.
,
1992
, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids A: Fluid Dyn.
,
4
(
3
), pp.
633
635
.10.1063/1.858280
28.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations: I. the Basic Experiment
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
29.
Kenjereš
,
S.
, and
Hanjalić
,
K.
,
1995
, “
Prediction of Turbulent Thermal Convection in Concentric and Eccentric Horizontal Annuli
,”
Int. J. Heat Fluid Flow
,
16
(
5
), pp.
429
439
.10.1016/0142-727X(95)00051-Q
30.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
, Cambridge, UK.
31.
Schlichting
,
H.
, and
Gersten
,
K.
,
2017
,
Boundary-Layer Theory
, Springer-Verlag Berlin Heidelberg.
32.
Pilkington
,
A.
,
Rosic
,
B.
,
Tanimoto
,
K.
, and
Horie
,
S.
,
2019
, “
Prediction of Natural Convection Heat Transfer in Gas Turbines
,”
Int. J. Heat Mass Transfer
,
141
, pp.
233
244
.10.1016/j.ijheatmasstransfer.2019.06.074
33.
Fahy
,
D. D.
, and
Ireland
,
P.
, “
The Effect of Wall Thermal Boudnary Condition on Natural Convective Shutdown Cooling in a Gas Turbine
,”
ASME
Paper No. GT2020-16008.10.1115/GT2020-16008
34.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
You do not currently have access to this content.