Abstract

Heavy-duty land-based gas turbines are often designed with can-annular combustors, which consist of a set of identical cans, acoustically connected on the upstream side via the compressor plenum, and, downstream, with a small annular gap located at the transition with the first turbine stage. The modeling of this cross-talk area is crucial to predict the thermo-acoustic modes of the system. Thanks to the discrete rotational symmetry, Bloch wave theory can be exploited to reduce the system to a longitudinal combustor with a complex-valued equivalent outlet reflection coefficient, which models the annular gap. The present study reviews existing low-order models based purely on geometrical parameters and compares them to two-dimensional Helmholtz simulations. We demonstrate that the modeling of the gap as a thin annulus is not suited for can-annular combustors and that the Rayleigh conductivity model only gives qualitative agreement. We then propose an extension for the equivalent reflection coefficient that accounts not only for geometrical but also flow parameters, by means of a characteristic length. The proposed model is in excellent agreement with two-dimensional simulations and is able to correctly capture the eigenfrequencies of the system. We then perform a Design of Experiments study that allows us to explore various configurations and build correlations for the characteristic length. Finally, we discuss the validity limits of the proposed low-order modeling approach.

References

1.
Bethke
,
S.
,
Krebs
,
W.
,
Flohr
,
P.
, and
Prade
,
B.
,
2002
, “
Thermoacoustic Properties of Can Annular Combustors
,”
AIAA
Paper No. 2002-2570.10.2514/6.2002-2570
2.
Kaufmann
,
P.
,
Krebs
,
W.
,
Valdes
,
R.
, and
Wever
,
U.
,
2008
, “
3D Thermoacoustic Properties of Single Can and Multi Can Combustor Configurations
,”
ASME
Paper No. GT2008-50755.10.1115/GT2008-50755
3.
Panek
,
L.
,
Farisco
,
F.
, and
Huth
,
M.
,
2017
, “
Thermo-Acoustic Characterization of Can-Can Interaction of a Can-Annular Combustion System Based on Unsteady CFD LES Simulation
,”
Proceedings of First Global Power and Propulsion Forum
, GPPS, Zurich, Switzerland, Jan. 16–18, Paper No.
GPPF-2017-81
.https://www.researchgate.net/publication/317400221_THERMOACOUSTIC_CHARACTERIZATION_OF_CAN-CAN_INTERACTION_OF_A_CANANNULAR_COMBUSTION_SYSTEM_BASED_ON_UNSTEADY_CFD_LES_SIMULATION
4.
Farisco
,
F.
,
Panek
,
L.
, and
Kok
,
J. B.
,
2017
, “
Thermo-Acoustic Cross-Talk Between Cans in a Can-Annular Combustor
,”
Int. J. Spray Combust. Dyn.
,
9
(
4
), pp.
452
469
.10.1177/1756827717716373
5.
Ghirardo
,
G.
,
Di Giovine
,
C.
,
Moeck
,
J. P.
, and
Bothien
,
M. R.
,
2019
, “
Thermoacoustics of Can-Annular Combustors
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011007
.10.1115/1.4040743
6.
Jegal
,
H.
,
Moon
,
K.
,
Gu
,
J.
,
Li
,
L. K.
, and
Kim
,
K. T.
,
2019
, “
Mutual Synchronization of Two Lean-Premixed Gas Turbine Combustors: Phase Locking and Amplitude Death
,”
Combust. Flame
,
206
, pp.
424
437
.10.1016/j.combustflame.2019.05.017
7.
Moon
,
K.
,
Jegal
,
H.
,
Gu
,
J.
, and
Kim
,
K. T.
,
2019
, “
Combustion-Acoustic Interactions Through Cross-Talk Area Between Adjacent Model Gas Turbine Combustors
,”
Combust. Flame
,
202
, pp.
405
416
.10.1016/j.combustflame.2019.01.027
8.
Moon
,
K.
,
Jegal
,
H.
,
Yoon
,
C.
, and
Kim
,
K. T.
,
2020
, “
Cross-Talk-Interaction-Induced Combustion Instabilities in a Can-Annular Lean-Premixed Combustor Configuration
,”
Combust. Flame
,
220
, pp.
178
188
.10.1016/j.combustflame.2020.06.041
9.
Moon
,
K.
,
Yoon
,
C.
, and
Kim
,
K. T.
,
2021
, “
Influence of Rotational Asymmetry on Thermoacoustic Instabilities in a Can-Annular Lean-Premixed Combustor
,”
Combust. Flame
,
223
, pp.
295
306
.10.1016/j.combustflame.2020.10.012
10.
Bloch
,
F.
,
1929
, “
Über Die Quantenmechanik Der Elektronen in Kristallgittern
,”
Z. Phys.
,
52
(
7–8
), pp.
555
600
.10.1007/BF01339455
11.
von Saldern
,
J.
,
Orchini
,
A.
, and
Moeck
,
J.
,
2021
, “
Analysis of Thermoacoustic Modes in Can-Annular Combustors Using Effective Bloch-Type Boundary Conditions
,”
ASME J. Eng. Gas Turbines Power
,
143
(
7
), p.
071019
.10.1115/1.4049162
12.
Howe
,
M. S.
,
1998
,
Acoustics of Fluid-Structure Interactions
, 1st ed.,
Cambridge University Press
, Cambridge, UK.
13.
Fournier
,
G. J. J.
,
Haeringer
,
M.
,
Silva
,
C. F.
, and
Polifke
,
W.
,
2021
, “
Low-Order Modeling to Investigate Clusters of Intrinsic Thermoacoustic Modes in Annular Combustors
,”
ASME J. Eng. Gas Turbines Power
,
143
(
4
), p.
041025
.10.1115/1.4049356
14.
Haeringer
,
M.
,
Fournier
,
G. J. J.
,
Meindl
,
M.
, and
Polifke
,
W.
,
2021
, “
A Strategy to Tune Acoustic Terminations of Single-Can Test-Rigs to Mimic Thermoacoustic Behavior of a Full Engine
,”
ASME J. Eng. Gas Turbines Power
,
143
(
7
), p.
710029
.10.1115/1.4048642
15.
Yoon
,
M.
,
2021
, “
Thermoacoustics and Combustion Instability Analysis for Multi-Burner Combustors
,”
J. Sound Vib.
,
492
, p.
115774
.10.1016/j.jsv.2020.115774
16.
Marble
,
F. E.
, and
Candel
,
S. M.
,
1977
, “
Acoustic Disturbance From Gas Non-Uniformities Convected Through a Nozzle
,”
J. Sound Vib.
,
55
(
2
), pp.
225
243
.10.1016/0022-460X(77)90596-X
17.
Bauerheim
,
M.
,
Duran
,
I.
,
Livebardon
,
T.
,
Wang
,
G.
,
Moreau
,
S.
, and
Poinsot
,
T.
,
2016
, “
Transmission and Reflection of Acoustic and Entropy Waves Through a Stator–Rotor Stage
,”
J. Sound Vib.
,
374
, pp.
260
278
.10.1016/j.jsv.2016.03.041
18.
Morgans
,
A. S.
, and
Duran
,
I.
,
2016
, “
Entropy Noise: A Review of Theory, Progress and Challenges
,”
Int. J. Spray Combust. Dyn.
,
8
(
4
), pp.
285
298
.10.1177/1756827716651791
19.
Mensah
,
G. A.
,
Campa
,
G.
, and
Moeck
,
J. P.
,
2016
, “
Efficient Computation of Thermoacoustic Modes in Industrial Annular Combustion Chambers Based on Bloch-Wave Theory
,”
ASME J. Eng. Gas Turbines Power
,
138
(
8
), p.
081502
.10.1115/1.4032335
20.
Ghirardo
,
G.
,
Moeck
,
J. P.
, and
Bothien
,
M. R.
,
2020
, “
Effect of Noise and Nonlinearities on Thermoacoustics of Can-Annular Combustors
,” ASME
ASME J. Eng. Gas Turbines Power
,
142
(
4
), p.
041005
.10.1115/1.4044487
21.
Haeringer
,
M.
, and
Polifke
,
W.
,
2019
, “
Time Domain Bloch Boundary Conditions for Efficient Simulation of Thermoacoustic Limit-Cycles in (Can-)Annular Combustors
,”
ASME J. Eng. Gas Turbines Power
,
141
(
12
), p.
121005
.10.1115/1.4044869
22.
Dowling
,
A. P.
, and
Stow
,
S. R.
,
2003
, “
Acoustic Analysis of Gas Turbine Combustors
,”
J. Propul. Power
,
19
(
5
), pp.
751
764
.10.2514/2.6192
23.
Schuermans
,
B.
,
Bellucci
,
V.
, and
Paschereit
,
C. O.
,
2003
, “
Thermoacoustic Modeling and Control of Multi-Burner Combustion Systems
,”
ASME
Paper No. GT2003-38688.10.1115/GT2003-38688
24.
Bothien
,
M.
,
Moeck
,
J.
,
Lacarelle
,
A.
, and
Paschereit
,
C. O.
,
2007
, “
Time Domain Modelling and Stability Analysis of Complex Thermoacoustic Systems
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
221
(
5
), pp.
657
668
.10.1243/09576509JPE384
25.
Emmert
,
T.
,
Meindl
,
M.
,
Jaensch
,
S.
, and
Polifke
,
W.
,
2016
, “
Linear State Space Interconnect Modeling of Acoustic Systems
,”
Acta Acust. United Acust.
,
102
(
5
), pp.
824
833
.10.3813/AAA.918997
26.
Barenblatt
,
G. I.
,
2003
,
Scaling
(Cambridge Texts in Applied Mathematics)
Cambridge University Press
,
Cambridge, UK
.
27.
Polifke
,
W.
,
2004
, “
Combustion Instabilities
,”
Advances in Aeroacoustics and Applications
, eds.
J.
Anthoine
and
A.
Hirschberg
,
Von Karman Institute
,
Rhode-St-Genèse, Belgium
, Paper No. VKI LS 2004–05.
28.
Paschereit
,
C. O.
, and
Polifke
,
W.
,
1998
, “
Investigation of the Thermo-Acoustic Characteristics of a Lean Premixed Gas Turbine Burner
,”
ASME
Paper No. 98-GT-582.10.1115/98-GT-582
29.
Stow
,
S.
,
Dowling
,
A.
, and
Hynes
,
T.
,
2002
, “
Reflection of Circumferential Modes in a Choked Nozzle
,”
J. Fluid Mech.
,
467
, pp.
215
239
.10.1017/S0022112002001428
30.
Gentemann
,
A.
,
Fischer
,
A.
,
Evesque
,
S.
, and
Polifke
,
W.
,
2003
, “
Acoustic Transfer Matrix Reconstruction and Analysis for Ducts With Sudden Change of Area
,”
AIAA
Paper No. 2003-3142.10.2514/6.2003-3142
31.
Flohr
,
P.
,
Paschereit
,
C. O.
, and
Bellucci
,
V.
,
2003
, “
Steady CFD Analysis for Gas Turbine Burner Transfer Functions
,”
AIAA
Paper No. 2003-1346.10.2514/6.2003-1346
32.
Schuermans
,
B.
,
Bellucci
,
V.
,
Guethe
,
F.
,
Meili
,
F.
,
Flohr
,
P.
, and
Paschereit
,
O.
,
2004
, “
A Detailed Analysis of Thermoacoustic Interaction Mechanisms in a Turbulent Premixed Flame
,”
ASME
GT2004-53831.10.1115/GT2004-53831
33.
Bothien
,
M. R.
, and
Wassmer
,
D.
,
2015
, “
Impact of Density Discontinuities on the Resonance Frequency of Helmholtz Resonators
,”
AIAA J.
,
53
(
4
), pp.
877
887
.10.2514/1.J053227
34.
McClarren
,
R.
,
2018
,
Uncertainty Quantification and Predictive Computational Science: A Foundation for Physical Scientists and Engineers
,
Springer International Publishing, New York
.
35.
Loeppky
,
J. L.
,
Sacks
,
J.
, and
Welch
,
W. J.
,
2009
, “
Choosing the Sample Size of a Computer Experiment: A Practical Guide
,”
Technometrics
,
51
(
4
), pp.
366
376
.10.1198/TECH.2009.08040
36.
Munjal
,
M. L.
,
2014
,
Acoustics of Ducts and Mufflers
, 2nd ed.,
Wiley
,
Chichester, West Sussex, UK
.
You do not currently have access to this content.