Abstract

Electrical resistance (ER), also known as direct current potential drop, has been demonstrated as an enabling means to monitor damage evolution in SiC-based ceramic matrix composites (CMCs). For laminate composites, it has become apparent that the location and orientation of SiC fibers, free Si, and in some cases insertion of C rods can greatly affect the measured resistance. In addition, the nature of crack growth through the different plies which consist of different constituents will have different effects on the change in resistance. Therefore, both experimental and modeling approaches as to the resistance and change in resistance for different laminate architectures based on the nature of constituent content and orientation are needed to utilize and optimize ER as a health-monitoring technique. In this work, unidirectional and cross-ply laminate composites have been analyzed using a ply-based electrical model. Based on a ply-level circuit model, the change in resistance was modeled for damage development. It is believed that this can serve as a basis for tailoring the architecture/constituent content to create a “smarter” composite.

References

1.
Naslain
,
R.
,
2004
, “
Design, Preparation and Properties of Non-Oxide CMCs for Application in Engines and Nuclear Reactors: An Overview
,”
Compos. Sci. Technol.
,
64
(
2
), pp.
155
170
.10.1016/S0266-3538(03)00230-6
2.
DiCarlo
,
J. A.
, Yun, H.-M, Morscher, G. N., and Bhatt, R. T.,
2005
, “
SiC/SiC Composites for 1200 °C and Above
,”
Handbook of Ceramic Composites
,
Springer
,
Boston
, MA, pp.
77
98
.
3.
Morscher
,
G. N.
,
2010
, “
Fiber‐Reinforced Ceramic Matrix Composites for Aero Engines
,”
Encyclopedia of Aerospace Engineering
, Wiley, Chichester, UK, pp.
1
10
.10.1002/9780470686652.eae220
4.
Zok
,
F. W.
,
2016
, “
Ceramic-Matrix Composites Enable Revolutionary Gains in Turbine Engine Efficiency
,”
Am. Ceram. Soc. Bull.
,
95
(
5
), pp.
22
28
.https://www.semanticscholar.org/paper/Ceramic-matrix-composites-enablerevolutionary-in-Zok/088f13959893645c09c11271f812105dfeb03262
5.
Budiansky
,
B.
,
Hutchinson
,
J. W.
, and
Evans
,
A. G.
,
1986
, “
Matrix Fracture in Fiber-Reinforced Ceramics
,”
J. Mech. Phys. Solids
,
34
(
2
), pp.
167
189
.10.1016/0022-5096(86)90035-9
6.
Marshall
,
D. B.
, and
Evans
,
A. G.
,
1985
, “
Failure Mechanisms in Ceramic‐Fiber/Ceramic‐Matrix Composites
,”
J. Am. Ceram. Soc.
,
68
(
5
), pp.
225
231
.10.1111/j.1151-2916.1985.tb15313.x
7.
Chawla
,
K. K.
,
2013
,
Ceramic Matrix Composites
,
Springer Science & Business Media
, Salmon Tower Building, New York.
8.
Beyerle
,
D. S.
,
Spearing
,
S. M.
,
Zok
,
F. W.
, and
Evans
,
A. G.
,
1992
, “
Damage and Failure in Unidirectional Ceramic–Matrix Composites
,”
J. Am. Ceram. Soc.
,
75
(
10
), pp.
2719
2725
.10.1111/j.1151-2916.1992.tb05495.x
9.
Gorman
,
M. R.
,
1998
, “
Progress in Detecting Transverse Matrix Cracking Using Modal Acoustic Emission
,”
Review of Progress in Quantitative Nondestructive Evaluation
,
Springer
,
Boston
, MA, pp.
557
564
.
10.
Choi
,
S. R.
, and
Kowalik
,
R. W.
,
2008
, “
Interlaminar Crack Growth Resistances of Various Ceramic Matrix Composites in Mode I and Mode II Loading
,”
ASME J. Eng. Gas Turbines Power
,
130
(
3
), p.
031301
.10.1115/1.2800349
11.
Johnson
,
H. H.
,
1965
, “
Calibrating the Electric Potential Method for Studying Slow Crack Growth
,”
Mater. Res. Stand.
,
5
(
1
), pp.
442
445
.https://www.astm.org/DIGITAL_LIBRARY/ST P/MMR/PAGES/MRS6509-EB.htm
12.
Hartman
,
G. A.
, and
Johnson
,
D. A.
,
1987
, “
DC Electric-Potential Method Applied to Thermal/Mechanical Fatigue Crack Growth
,”
Exp. Mech.
,
27
(
1
), pp.
106
112
.10.1007/BF02318872
13.
Simon
,
C.
,
Rebillat
,
F.
,
Herb
,
V.
, and
Camus
,
G.
,
2017
, “
Monitoring Damage Evolution of SiCf/[SiBC] m Composites Using Electrical Resistivity: Crack Density-Based Electromechanical Modeling
,”
Acta Mater.
,
124
, pp.
579
587
.10.1016/j.actamat.2016.11.036
14.
Panakarajupally
,
R. P.
,
Presby
,
M. J.
,
Manigandan
,
K.
,
Zhou
,
J.
,
Chase
,
G. G.
, and
Morscher
,
G. N.
,
2019
, “
Thermomechanical Characterization of SiC/SiC Ceramic Matrix Composites in a Combustion Facility
,”
Ceramics
,
2
(
2
), pp.
407
425
.10.3390/ceramics2020032
15.
Panakarajupally
,
R. P.
, Kannan, M., and Morscher, G. N.,
2020
, “
Tension-Tension Fatigue Behavior of a Melt-Infiltrated SiC/SiC Ceramic Matrix Composites in a Combustion Environment
,”
J. Eur. Ceram. Soc.
,
41
(
5
), pp.
3094
3107
.https://www.sciencedirect.com/science/article/pii/S0955221920308207#!
16.
Singh
,
Y. P.
,
Panakarajupally
,
R.
,
Presby
,
M. J.
, and
Morscher
,
G. N.
,
2019
, “
Interlaminar Damage Detection Through the Understanding of Direct Current Spreading in Continuous Fiber Reinforced Composites
,”
Compos. Part B: Eng.
,
166
, pp.
722
730
.10.1016/j.compositesb.2019.03.011
17.
Shrestha
,
S.
,
Kannan
,
M.
,
Morscher
,
G. N.
,
Presby
,
M. J.
, and
Mostafa Razavi
,
S.
,
2021
, “
In-Situ Fatigue Life Analysis by Modal Acoustic Emission, Direct Current Potential Drop and Digital Image Correlation for Steel
,”
Int. J. Fatigue
,
142
, p.
105924
.10.1016/j.ijfatigue.2020.105924
18.
Wang
,
X.
, and
Chung
,
D. D. L.
,
1998
, “
Self-Monitoring of Fatigue Damage and Dynamic Strain in Carbon Fiber Polymer-Matrix Composite
,”
Compos. Part B: Eng.
,
29
(
1
), pp.
63
73
.10.1016/S1359-8368(97)00014-0
19.
Wang
,
S.
, and
Chung
,
D. D. L.
,
2006
, “
Self-Sensing of Flexural Strain and Damage in Carbon Fiber Polymer-Matrix Composite by Electrical Resistance Measurement
,”
Carbon
,
44
(
13
), pp.
2739
2751
.10.1016/j.carbon.2006.03.034
20.
Panakarajupally
,
R. P.
, El Rassi, J., Manigandan, K., Singh, Y. P., and Morscher, G. N.,
2020
, “
Monitoring Damage in Non-Oxide Composites at High Temperatures Using Carbon-Containing CVD SiC Monofilament Fibers as Embedded Electrical Resistance Sensors
,”
ASME J. Eng. Gas Turbines Power
,
143
(
5
), p.
051027
.10.1115/1.4048694
21.
Smith, C., 2009, “Monitoring Damage Accumulation in SiC/SiC Ceramic Matrix Composites Using Electrical Resistance,” M.S. thesis, University of Akron, Akron, OH.
22.
Morscher
,
G. N.
,
Baker
,
C.
, and
Smith
,
C.
,
2014
, “
Electrical Resistance of SiC Fiber Reinforced SiC/Si Matrix Composites at Room Temperature During Tensile Testing
,”
Int. J. Appl. Ceram. Technol.
,
11
(
2
), pp.
263
272
.10.1111/ijac.12175
23.
Simon
,
C.
,
Rebillat
,
F.
, and
Camus
,
G.
,
2017
, “
Electrical Resistivity Monitoring of a SiC/[Si-BC] Composite Under Oxidizing Environments
,”
Acta Mater.
,
132
, pp.
586
597
.10.1016/j.actamat.2017.04.070
24.
Morscher
,
G. N.
, and
Gordon
,
N. A.
,
2017
, “
Acoustic Emission and Electrical Resistance in SiC-Based Laminate Ceramic Composites Tested Under Tensile Loading
,”
J. Eur. Ceram. Soc.
,
37
(
13
), pp.
3861
3872
.10.1016/j.jeurceramsoc.2017.05.003
25.
Morscher
,
G. N.
, and
Maxwell
,
R.
,
2019
, “
Monitoring Tensile Fatigue Crack Growth and Fiber Failure Around a Notch in Laminate SiC/SiC Composites Utilizing Acoustic Emission, Electrical Resistance, and Digital Image Correlation
,”
J. Eur. Ceram. Soc.
,
39
(
2–3
), pp.
229
239
.10.1016/j.jeurceramsoc.2018.08.049
26.
Abràmoff
,
M. D.
,
Magalhães
,
P. J.
, and
Ram
,
S. J.
,
2004
, “
Image Processing With ImageJ
,”
Biophotonics Int.
,
11
(
7
), pp.
36
42
.https://imagescience.org/meijering/publications/download/bio2004.pdf
You do not currently have access to this content.