Abstract

The balance piston seal in multiple-stage centrifugal compressors and axial turbines sustains the largest pressure drop through the machines and therefore plays an important role in successful full load operation at high rotational speed. This is especially true for power dense turbomachines in supercritical CO2 power cycles that generate or expend higher fluid pressures (above the critical value 7.3 MPa) and density (close to water 1000 kg/m3), because the fluid forces generated by the balance piston seals are directly proportional to the fluid density and the pressure drop across the seal. This paper presents a comprehensive assessment and comparison on the leakage and rotordynamic performance of three types of annular gas seals for application in a 14 MW supercritical CO2 turbine. These three seals represent the main seal types used in high-speed rotating machines at the balance piston location in efforts to limit internal leakage flow and achieve rotordynamic stability, including a labyrinth seal (LABY), a fully partitioned pocket damper seal (FPDS), and a hole-pattern damper seal (HPS). These three seals were designed to have the same sealing clearance and similar axial lengths. To enhance the seal net damping capability at high inlet preswirl condition, a straight swirl brake was also designed and employed at seal entrance for each type seal to reduce the seal inlet preswirl velocity. Numerical results of leakage flow rates, rotordynamic force coefficients, cavity dynamic pressure, and swirl velocity developments were analyzed and compared for three seal designs at high positive inlet preswirl (in the direction of shaft rotation), using a proposed transient computational fluid dynamic (CFD)-based perturbation method based on the multiple-frequency elliptical-orbit rotor whirling model and the mesh deformation technique. To take into account of real gas effect with high accuracy, a table look-up procedure based on the National Institute of Standards and Technology reference fluid properties database was implemented, using an in-house code, for the fluid properties of CO2 in both supercritical and subcritical conditions. Results show that the inlet swirl brake can significantly reduce the preswirl velocity at seal entrance, lowering the effective damping crossover frequency fco (or even fco = 0) to maximize the full operational frequency range of the machines. In stability analysis phase of a MW-scale supercritical CO2 turbine/compressor, the seal stiffness effects on the rotor mode shape must be evaluated carefully, where the seal stiffness is sufficiently large (comparable to the bearing stiffness). From a rotordynamic viewpoint, the HPS seal with entrance swirl brake is a better seal concept for the balance piston seal in supercritical CO2 turbomachinery, which possesses the largest positive effective damping throughout the entire subsynchronous frequency range.

References

1.
Klaus
,
B.
,
Peter
,
F.
, and
Richard
,
D.
,
2017
,
Fundamentals and Applications of Supercritical Carbon Dioxide (sCO2) Based Power Cycles
,
Elsevier
, Cambridge, MA, pp.
4
21
.
2.
Kimball
,
K. J.
, and
Clementoni
,
E. M.
,
2012
, “
Supercritical Carbon Dioxide Brayton Power Cycle Development Overview
,”
ASME
Paper No. GT2012-68204.10.1115/GT2012-68204
3.
Fuller
,
R.
,
Preuss
,
J.
, and
Noall
,
J.
,
2012
, “
Turbomachinery for Supercritical CO2 Power Cycles
,”
ASME
Paper No. GT2012-68735.10.1115/GT2012-68735
4.
Allison
,
T. C.
,
Moor
,
J. J.
,
Wikes
,
J. C.
, and
Brun
,
K.
,
2017
, “
Turbomachinery Overview for Supercritical CO2 Power Cycles
,”
The 46th Turbomachinery and 33rd Pump Symposia
, Houston, TX, Sept. 11–14, pp.
1
15
.https://hdl.handle.net/1969.1/166785
5.
Conboy
,
T.
,
2012
, “
Gas Bearings and Seals Development for Supercritical CO2 Turbomachinery
,” Sandia National Laboratories, Albuquerque, NM, Technical Report No. SAND2012-8895.
6.
Conboy
,
T.
,
2012
, “
An Approach to Turbomachinery for Supercritical Brayton Space Power Cycles
,” Sandia National Laboratories, Albuquerque, NM, Technical Report No.
SAND2012-10194C
.https://www.osti.gov/biblio/1063431-approach-turbomachinery-supercritical-brayton-space-power-cycles
7.
Yuan
,
H.
,
Sandeep
,
P.
,
Mathew
,
W.
, and
Anderson
,
M.
,
2014
, “
Experiment and Numerical Study of Supercritical Carbon Dioxide Flow Through Labyrinth Seals
,”
The Fourth International Supercritical CO2 Power Cycles
, Pittsburgh, PA, Sept. 9–10, pp.
1
13
.http://sco2symposium.com/papers2014/turbomachinery/59PPT-Yuan.pdf
8.
Yuan
,
H.
,
Pidaparti
,
S.
,
Wolf
,
M.
,
Edlebeck
,
J.
, and
Anderson
,
M.
,
2015
, “
Numerical Modeling of Supercritical Carbon Dioxide Flow in See-Through Labyrinth Seals
,”
Nucl. Eng. Des.
,
293
, pp.
436
446
.10.1016/j.nucengdes.2015.08.016
9.
Bidkar
,
R. A.
,
Sevincer
,
E.
,
Wang
,
J.
,
Thatte
,
A. M.
,
Mann
,
A.
,
Peter
,
M.
,
Musgrove
,
G.
,
Allison
,
T.
, and
Moore
,
J.
,
2017
, “
Low-Leakage Shaft-End Seals for Utility-Scale Supercritical CO2 Turboexpanders
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
022503
.10.1115/1.4034258
10.
Thatte
,
A.
,
Loghin
,
A.
,
Martin
,
E.
,
Dheeradhada
,
V.
,
Shin
,
Y.
, and
Ananthasayanam
,
V.
,
2016
, “
Multi-Scale Coupled Physics Models and Experiments for Performance and Life Prediction of Supercritical CO2 Turbomachinery Components
,”
ASME
Paper No. GT2016-57670.10.1115/GT2016-57670
11.
Rimpel
,
A.
,
Smith
,
N.
,
Wilkes
,
J.
,
Delgado
,
H.
,
Allison
,
T.
,
Bidkar
,
R. A.
,
Kumar
,
U.
, and
Trivedi
,
D.
,
2018
, “
Test Rig Design for Large Supercritical CO2 Trubine Seals
,”
The Sixth International Supercritical CO2 Power Cycle Symposium
, San Antonio, TX, Mar. 27–29, pp.
1
14
.http://sco2symposium.com/papers2018/turbomachinery/054_Pres.pdf
12.
Trivedi
,
D.
,
Bidkar
,
R. A.
,
Wolfe
,
C. E.
, and
Zheng
,
X.
,
2018
, “
Film-Stiffness Characterization for Supercritical CO2 Film-Riding Seals
,”
ASME
Paper No. GT2018-76161.10.1115/GT2018-76161
13.
Trivedi
,
D.
,
Bidkar
,
R. A.
,
Wolfe
,
C. E.
, and
Mortzheim
,
J.
,
2019
, “
Supercritical CO2 Test for Hydrostatic Film Stiffness in Film-Riding Seals
,”
ASME
Paper No. GT2019-90975.10.1115/GT2019-90975
14.
Ertas
,
B. H.
,
Delgado
,
A.
, and
Vannini
,
G.
,
2012
, “
Rotordynamic Force Coefficients for Three Types of Annular Gas Seals With Inlet Preswirl and High Differential Pressure Ratio
,”
ASME J. Eng. Gas Turbines Power
,
134
(
4
), p.
042503
.10.1115/1.4004537
15.
Vannini
,
G.
,
Cioncoini
,
S.
, and
Vescovo
,
G.
,
2014
, “
Labyrinth Seal and Pocket Damper Seal High Pressure Rotordynamic Test Data
,”
ASME J. Eng. Gas Turbines Power
,
136
(
10
), p.
022501
.10.1115/1.4025360
16.
Vannarsdall
,
M.
, and
Childs
,
D. W.
,
2014
, “
Static and Rotordynamic Characteristics for a New Hole Pattern Annular Gas Seal Design Incorporating Large Diameter Holes
,”
ASME J. Eng. Gas Turbines Power
,
136
(
2
), p.
022507
.10.1115/1.4025536
17.
Childs
,
D. W.
,
Arthur
,
S.
, and
Mehta
,
N. J.
,
2014
, “
The Impact of Hole Depth on the Rotordynamic and Leakage Characteristics of Hole-Pattern-Stator Gas Annular Seals
,”
ASME J. Eng. Gas Turbines Power
,
136
(
4
), p.
042501
.10.1115/1.4025888
18.
Childs
,
D. W.
, and
Wade
,
J.
,
2004
, “
Rotordynamic-Coefficient and Leakage Characteristics for Hole-Pattern-Stator Annular Gas Seals-Measurements Versus Predictions
,”
ASME J. Tribol.
,
126
(
2
), pp.
326
333
.10.1115/1.1611502
19.
Brown
,
P.
, and
Childs
,
D.
,
2012
, “
Measurement Verus Predictions of Rotordynamic Coefficients of a Hole-Pattern Gas Seal With Negative Preswirl
,”
ASME J. Eng. Gas Turbines Power
,
134
(
12
), p.
122503
.10.1115/1.4007331
20.
Childs
,
D. W.
,
Mclean
,
J. E.
,
Zhang
,
M.
, and
Authur
,
S. P.
,
2016
, “
Rotordynamic Performance of a Negative-Swirl Brake for a Tooth-on-Stator Labyrinth Seal
,”
ASME J. Eng. Gas Turbines Power
,
138
(
6
), p.
062505
.10.1115/1.4031877
21.
Moreland
,
A. J.
,
Childs
,
D.
, and
Bullock
,
J.
,
2018
, “
Measured Static and Rotordynamic Characteristics of a Smooth-Stator/Grooved-Rotor Liquid Annular Seal
,”
ASME J. Fluids Eng.
,
140
(
10
), p.
101109
.10.1115/1.4040762
22.
Jolly
,
P.
,
Arghir
,
M.
,
Bonneau
,
O.
, and
Hassini
,
M. A.
,
2018
, “
Experimental and Theoretical Rotordynamic Coefficients of Smooth and Round-Hole Pattern Water-Fed Annular Seals
,”
ASME J. Eng. Gas Turbines Power
,
140
(
11
), p.
112501
.10.1115/1.4040177
23.
Ertas
,
B. H.
,
Delgado
,
A.
, and
Moore
,
J.
,
2018
, “
Dynamic Characterization of an Integral Squeeze Film Bearing Support Damper for a Supercritical CO2 Expander
,”
ASME J. Eng. Gas Turbines Power
,
140
(
5
), p.
052501
.10.1115/1.4038121
24.
Li
,
Z.
,
Li
,
J.
, and
Yan
,
X.
,
2013
, “
Multiple Frequencies Elliptical Whirling Orbit Model and Transient RANS Solution Approach to Rotordynamic Coefficients of Annual Gas Seals Prediction
,”
ASME J. Vib. Acoust.
,
135
(
3
), p.
031005
.10.1115/1.4023143
25.
Li
,
Z.
,
Li
,
J.
, and
Feng
,
Z.
,
2016
, “
Comparison of Rotordynamic Characteristics Predictions for Annular Gas Seals Using the Transient Computational Fluid Dynamic Method Based on Different Single-Frequency and Multi-Frequency Rotor Whirling Models
,”
ASME J. Tribol.
,
138
(
1
), p.
011701
.10.1115/1.4030807
26.
Li
,
Z.
,
Fang
,
Z.
, and
Li
,
J.
,
2020
, “
A Comparison of Static and Rotordynamic Characteristics for Two Types of Liquid Annular Seals With Parallelly Grooved Stator/Rotor
,”
ASME J. Eng. Gas Turbines Power
,
142
(
9
), p.
091012
.10.1115/1.4048144
27.
ANSYS
,
2006
, “
ANSYS CFX-Solver Theory Guide. Release 11.0
,”
ANSYS
,
Canonsburg, PA
.
28.
Childs
,
D. W.
,
1993
,
Turbomachinery Rotordynamics: Phenomena, Modeling and Analysis
,
Wiley
,
New York
, p.
292
.
29.
Baldassarre
,
L.
,
Fontana
,
M.
,
Bernocchi
,
A.
, and
Moretti
,
M.
,
2016
, “
Effect of Relative Journal Bearing and Honeycomb Seal Direct Stiffness on Radial Synchronous Vibrations of High-Pressure Centrifugal Compressors
,”
The 45th Turbomachinery and 32nd Pump Symposia
, Houston, TX, Sept. 12–15, pp.
1
15
.https://core.ac.uk/download/pdf/147252822.pdf
30.
Ishimoto
,
L.
,
Miranda
,
M. A.
,
Audenhove
,
F. N.
,
Silva
,
R. T.
,
Colby
,
G. M.
, and
Memmott
,
E. A.
,
2015
, “
Review of Centrifugal Compressors High Pressure Testing for Offshore Application
,”
The 44th Turbomachinery and 31st Pump Symposia
, Houston, TX, Sept. 14–17, pp.
1
19
.10.21423/R1V04J
31.
Li
,
J.
,
Choudhury
,
P. D.
, and
Kushner
,
F.
,
2003
, “
Evaluation of Centrifugal Compressor Stability Margin and Investigation of Antiswirl Mechanism
,”
32nd Turbomachinery Symposium, Turbomachinery Laboratory
, Texas A&M University, College Station, TX, Sept. 8–11, pp.
49
58
.10.21423/R12D35
You do not currently have access to this content.