Abstract

This work aimed to investigate cavitating flows of water, liquid hydrogen, and nitrogen on hydrofoils numerically, using the open source code openfoam. The Eulerian homogeneous mixture approach has been used, consisting in a mass transfer model, which is based on the combination of a two-phase incompressible unsteady solver with a volume of fluid interface tracking method. Thermal effects have been introduced by means of the activation of energy equation and latent heat source terms plus convective heat source term. The dependency of the saturation conditions to the temperature has been defined using Antoine-like equations. An extended Schnerr–Sauer model based on the classical nucleation theory (CNT) has been implemented for the computation of the interfacial mass transfer rates. In order to investigate the nucleation effects, an extension of the CNT has been considered by coupling the population balance equation (PBE)/extended quadrature-based method of moments with the computational fluid dynamics (CFD) model, which has been defined in combination with a transport equation for the nuclei density. Results showed that nucleation determined a nonuniform field of nuclei density so as to produce a reduction of the temperature drop inside the vapor bubbles, as well as a warmed wake downstream the vapor cavity. Unsteady computations also revealed an influence of the nucleation on the dynamics of the vapor cavity and the bubble detachment.

References

1.
Stahl
,
H. A.
,
Stepanoff
,
A. J.
, and
Phillipsburg
,
N.
,
1956
, “
Thermodynamic Aspects of Cavitation in Centrifugal Pumps
,”
ASME J. Basic Eng.
,
78
, pp.
1691
1693
.
2.
Stepanoff
,
A.
,
1964
, “
Cavitation Properties of Liquids
,”
ASME J. Eng. Power
,
86
(
2
), pp.
195
199
.10.1115/1.3677576
3.
De Giorgi
,
M. G.
,
Rodio
,
M. G.
, and
Ficarella
,
A.
,
2010
, “
Thermodynamic Effects on Cavitation in Water and Cryogenic Fluids
,”
ASME
Paper No. ESDA2010-24694.10.1115/ESDA2010-24694
4.
De Giorgi
,
M.
,
Ficarella
,
A.
, and
Tarantino
,
M.
,
2012
, “
Evaluating Cavitation Regimes in an Internal Orifice at Different Temperatures Using Frequency Analysis and Visualization
,”
Int. J. Heat Fluid Flow
,
39
, pp.
60
172
.https://www.sciencedirect.com/science/article/pii/S0142727X12001385
5.
De Giorgi
,
M.
,
Fontanarosa
,
D.
, and
Ficarella
,
A.
,
2018
, “
Characterization of Cavitating Flow Regimes in an Internal Sharp-Edged Orifice by Means of Proper Orthogonal Decomposition
,”
Exp. Therm. Fluid Sci.
,
93
, pp.
242
256
.10.1016/j.expthermflusci.2018.01.001
6.
Hord
,
J.
,
Anderson
,
L.
, and
Hall
,
W.
,
1972
, “
Cavitation in Liquid Cryogens—I: Venturi
,” National Aeronautics and Space Administration, Boulder, CO, Report No. NASA CR-2054.
7.
Hord
,
J.
,
1973
, “
Cavitation in Liquid Cryogens—II: Hydrofoil
,” National Aeronautics and Space Administration, Boulder, CO, Report No. NASA-CR-2156.
8.
Hord
,
J.
,
1973
, “
Cavitation in Liquid Cryogens—III: Ogives
,” National Aeronautics and Space Administration, Boulder, CO, Report No. NASA CR-2242.
9.
Yoshida
,
Y.
,
Kikuta
,
K.
,
Hasegawa
,
S.
,
Shimagaki
,
M.
, and
Tokumasu
,
T.
,
2007
, “
Thermodynamic Effect on a Cavitating Inducer in Liquid Nitrogen
,”
ASME J. Fluids Eng.
,
129
(
3
), pp.
273
278
.10.1115/1.2427076
10.
Kunz
,
R. F.
,
Boger
,
D. A.
,
Stinebring
,
D. R.
,
Chyczewski
,
T. S.
,
Lindau
,
J. W.
,
Gibeling
,
H. J.
,
Venkateswaran
,
S.
, and
Govindan
,
T.
,
2000
, “
A Preconditioned Navier–Stokes Method for Two-Phase Flows With Application to Cavitation Prediction
,”
Comput. Fluids
,
29
(
8
), pp.
849
875
.10.1016/S0045-7930(99)00039-0
11.
Merkle
,
C. L.
,
Feng
,
J.
, and
Buelow
,
P. E.
,
1998
, “
Computational Modeling of the Dynamics of Sheet Cavitation
,”
Third International Symposium on Cavitation
, Grenoble, France, April 7–10, 1998, pp.
47
54
.
12.
Zwart
,
P. J.
,
Gerber
,
A. G.
, and
Belamri
,
T.
,
2004
, “
A Two-Phase Flow Model for Predicting Cavitation Dynamics
,”
Fifth International Conference on Multiphase Flow
, Yokohama, Japan, May 30–June 4, Paper No. 152.
13.
Rodio
,
M. G.
,
De Giorgi
,
M.
, and
Ficarella
,
A.
,
2012
, “
Influence of Convective Heat Transfer Modeling on the Estimation of Thermal Effects in Cryogenic Cavitating Flows
,”
Int. J. Heat Mass Transfer
,
55
(
23–24
), pp.
6538
6554
.10.1016/j.ijheatmasstransfer.2012.06.060
14.
De Giorgi
,
M. G.
, and
Ficarella
,
A.
,
2009
, “
Simulation of Cryogenic Cavitation by Using Both Inertial and Heat Transfer Control Bubble Growth
,”
AIAA
Paper No. AIAA 2009-4039.10.2514/6.AIAA 2009-4039
15.
Goncalvès
,
E.
,
2014
, “
Modeling for Non Isothermal Cavitation Using 4-Equation Models
,”
Int. J. Heat Mass Transfer
,
76
, pp.
247
262
.10.1016/j.ijheatmasstransfer.2014.04.065
16.
Goncalvès
,
E.
, and
Zeidan
,
D.
,
2017
, “
Numerical Simulation of Unsteady Cavitation in Liquid Hydrogen Flows
,”
Int. J. Eng. Syst. Modell. Simul.
,
9
(
1
), pp.
41
52.
10.1504/IJESMS.2017.10002571
17.
Giannadakis
,
E.
,
Gavaises
,
M.
, and
Arcoumanis
,
C.
,
2008
, “
Modelling of Cavitation in Diesel Injector Nozzles
,”
J. Fluid Mech.
,
616
, pp.
153
193
.10.1017/S0022112008003777
18.
Li
,
D.
, and
Christian
,
H.
,
2017
, “
Simulation of Bubbly Flows With Special Numerical Treatments of the Semi-Conservative and Fully Conservative Two-Fluid Model
,”
Chem. Eng. Sci.
,
174
, pp.
25
39
.10.1016/j.ces.2017.08.030
19.
Liu
,
A.
,
Chen
,
J.
,
Yang
,
C.
, and
Mao
,
Z.
,
2017
, “
Simulation of Two-Phase Flow and Mass Transfer With Deformable Interface
,”
Sci. Sin.: Phys., Mech. Astron.
,
47
(
7
), p. 070009.
20.
Lo
,
S.
,
1996
, Application of Population Balance to CFD Modeling of Bubbly Flow Via the MUSIG Model, AEA Technology, Harwell, England.
21.
Carrica
,
P. M.
,
Drew
,
D.
,
Bonetto
,
F.
, and
Lahey
,
R. T.
,
1999
, “
A Polydisperse Model for Bubbly Two-Phase Flow Around a Surface Ship
,”
Int. J. Multiphase Flow
,
25
(
2
), pp.
257
305
.10.1016/S0301-9322(98)00047-0
22.
Lehr
,
F.
, and
Mewes
,
D.
,
2001
, “
A Transport Equation for the Interfacial Area Density Applied to Bubble Columns
,”
Chem. Eng. Sci.
,
56
(
3
), pp.
1159
1166
.10.1016/S0009-2509(00)00335-3
23.
Wiemann
,
D.
,
Lehr
,
F.
, and
Mewes
,
D.
,
2002
, “
Numerical Calculation of the Flow Field in Bubble Columns Using a Simplified Form of the Population Balance Equation
,”
ASME
Paper No. FEDSM2002-31124.10.1115/FEDSM2002-31124
24.
Kerdouss
,
F.
,
Bannari
,
A.
, and
Proulx
,
P.
,
2006
, “
Cfd Modeling of Gas Dispersion and Bubble Size in a Double Turbine Stirred Tank
,”
Chem. Eng. Sci.
,
61
(
10
), pp.
3313
3322
.10.1016/j.ces.2005.11.061
25.
Ban
,
Z.
,
Lau
,
K.
, and
Shariff
,
A.
,
2015
, “
Prediction of the Bubble Nucleation Rate in a Quasi-Stable Cavitating Nozzle Using 2D Computational Fluid Dynamics and Enhanced Classical Nucleation Theory
,”
Eng. Appl. Comput. Fluid Mech.
,
9
(
1
), pp.
247
258
.10.1080/19942060.2015.1005873
26.
Wang
,
Y.
, and
Brennen
,
C.
,
1998
, “
One-Dimensional Bubbly Cavitating Flows Through a Converging-Diverging Nozzle
,”
ASME J. Fluids Eng.
,
120
(
1
), pp.
166
170
.10.1115/1.2819642
27.
Delale
,
C. F.
,
Hruby
,
J.
, and
Marsik
,
F.
,
2003
, “
Homogeneous Bubble Nucleation in Liquids: The Classical Theory Revisited
,”
J. Chem. Phys.
,
118
(
2
), pp.
792
806
.10.1063/1.1525797
28.
Hong
,
B.
,
Keong
,
L.
, and
Shariff
,
A.
,
2016
, “
Cfd Modelling of Most Probable Bubble Nucleation Rate From Binary Mixture With Estimation of Components' Mole Fraction in Critical Cluster
,”
Continuum Mech. Thermodyn.
,
28
(
3
), pp.
655
668
.10.1007/s00161-014-0398-x
29.
Madadi-Kandjani
,
E.
, and
Passalacqua
,
A.
,
2015
, “
An Extended Quadrature-Based Moment Method With Log-Normal Kernel Density Functions
,”
Chem. Eng. Sci.
,
131
(
Suppl. C
), pp.
323
339
.10.1016/j.ces.2015.04.005
30.
Vikas
,
V.
,
Wang
,
Z.
,
Passalacqua
,
A.
, and
Fox
,
R.
,
2011
, “
Realizable High-Order Finite-Volume Schemes for Quadrature-Based Moment Methods
,”
J. Comput. Phys.
,
230
(
13
), pp.
5328
5352
.10.1016/j.jcp.2011.03.038
31.
Yuan
,
C.
,
Laurent
,
F.
, and
Fox
,
R.
,
2012
, “
An Extended Quadrature Method of Moments for Population Balance Equations
,”
J. Aerosol Sci.
,
51
(
Suppl. C
), pp.
1
23
.10.1016/j.jaerosci.2012.04.003
32.
Schnerr
,
G. H.
, and
Sauer
,
J.
,
2001
, “
Physical and Numerical Modeling of Unsteady Cavitation Dynamics
,”
Fourth International Conference on Multiphase Flow (ICMF)
, New Orleans, LA, May 27–June 1.
33.
De Giorgi
,
M.
,
Ficarella
,
A.
, and
Fontanarosa
,
D.
,
2017
, “
Implementation and Validation of an Extended Schnerr-Sauer Cavitation Model for Non-Isothermal Flows in OpenFOAM
,”
Energy Procedia
,
126
, pp.
58
65
.10.1016/j.egypro.2017.08.057
34.
Passalacqua
,
A.
,
Heylmun
,
J.
,
Icardi
,
M.
,
Hu
,
X.
, and
Guthrie
,
J.
,
2016
, “
OpenQBMM/OpenQBMM: OpenQBMM 2.0.0 Stable for OpenFOAM 4.x
.”
35.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H.
, and
Jiang
,
Y.
,
2002
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
617
624
.10.1115/1.1486223
36.
Christopher
,
D. M.
,
Wang
,
H.
, and
Peng
,
X.
,
2006
, “
Numerical Analysis of the Dynamics of Moving Vapor Bubbles
,”
Int. J. Heat Mass Transfer
,
49
(
19–20
), pp.
3626
3633
.10.1016/j.ijheatmasstransfer.2006.02.039
37.
Ramkrishna
,
D.
,
2000
,
Population Balances: Theory and Applications to Particulate Systems in Engineering
,
Academic Press
,
San Diego, CA
.
38.
Debenedetti
,
P. G.
,
1996
,
Metastable Liquids: Concepts and Principles
,
Princeton University Press
, Princeton, NJ.
39.
Pruppacher, H. R., Klett, J. D., and Wang, P. K., 1998, “
Microphysics of Clouds and Precipitation
,”
Aerosol Sci. Technol.
,
28
, pp.
381
382
.10.1080/02786829808965531
40.
Kwak
,
H.-Y.
, and
Oh
,
S.-D.
,
2004
, “
Gas-Vapor Bubble Nucleation—A Unified Approach
,”
J. Colloid Interface Sci.
,
278
(
2
), pp.
436
446
.10.1016/j.jcis.2004.06.020
41.
Kwak
,
H.-Y.
,
2004
, “
Vapor Bubble Nucleation: A Microscopic Phenomenon
,”
KSME Int. J.
,
18
(
8
), pp.
1271
1287
.10.1007/BF02984241
42.
Delale
,
C. F.
,
Okita
,
K.
,
Matsumoto
,
Y.
, and
Frantisek
,
M.
,
2005
, “
Steady-State Cavitating Nozzle Flows With Nucleation
,”
ASME J. Fluids Eng.
,
127
(
4
), pp.
770
777
.10.1115/1.1949643
43.
Cervone
,
A.
,
Bramanti
,
C.
,
Rapposelli
,
E.
, and
D'Agostino
,
L.
,
2006
, “
Thermal Cavitation Experiments on a Naca 0015 Hydrofoil
,”
ASME J. Fluids Eng.
,
128
(
2
), pp.
326
331
.10.1115/1.2169808
44.
Lemmon
,
E.
,
McLinden
,
M.
,
Friend
,
D.
,
Linstrom
,
P.
, and
Mallard
,
W.
,
2011
, “
NIST Chemistry WebBook, NIST Standard Reference Database Number 69
,” National Institute of Standards and Technology, Gaithersburg, MD.
45.
Brennen
,
C. E.
,
2013
,
Cavitation and Bubble Dynamics
,
Cambridge University Press
, Pasadena, CA.
46.
Holzmann
,
T.
,
2016
, “
Mathematics, Numerics, Derivations and OpenFOAM®
,” Holzmann CFD, Loeben, Germany, accessed Nov. 29, 2017, https://holzmann-cfd.de
47.
Damián
,
S. M.
,
2013
, “
An Extended Mixture Model for the Simultaneous Treatment of Short and Long Scale Interfaces
,” Dissertations schrift, Universidad Nacional del Litoral, Santa Fe, Argentinien.
48.
Krepper
,
E.
,
Lucas
,
D.
,
Frank
,
T.
,
Prasser
,
H.-M.
, and
Zwart
,
P. J.
,
2008
, “
The Inhomogeneous MUSIG Model for the Simulation of Polydispersed Flows
,”
Nucl. Eng. Des.
,
238
(
7
), pp.
1690
1702
.10.1016/j.nucengdes.2008.01.004
49.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
50.
Gosset, A., Lema, M., López Peña, F., 2012, “
Periodic Phenomena on a Partially Cavitating Hydrofoil
,”
8th International Symposium on cavitation
, Singapore, Aug., pp.
13
16
.10.3850/978-981-07-2826-7_277
51.
Coutier-Delgosha
,
O.
,
Fortes-Patella
,
R.
, and
Reboud
,
J.
,
2003
, “
Evaluation of the Turbulence Model Influence on the Numerical Simulations of Unsteady Cavitation
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
38
45
.10.1115/1.1524584
You do not currently have access to this content.