Abstract

Nowadays, gas turbines (GTs) are equipped with an increasing number of sensors, of which the acquired data are used for monitoring and diagnostic purposes. Therefore, anomaly detection in sensor time series is a crucial aspect for raw data cleaning, in order to identify accurate and reliable data. To this purpose, a novel methodology based on Bayesian hierarchical models (BHMs) is proposed in this paper. The final aim is the exploitation of information held by a pool of observations from redundant sensors as knowledge base to generate statistically consistent measurements according to input data. In this manner, it is possible to simulate a “virtual” healthy sensor, also known as digital twin, to be used for sensor fault identification. The capability of the novel methodology based on BHM is assessed by using field data with two types of implanted faults, i.e., spikes and bias faults. The analyses consider different numbers of faulty sensors within the pool and different fault magnitudes. In this manner, different levels of fault severity are investigated. The results demonstrate that the new approach is successful in most fault scenarios for both spike and bias faults and provide guidelines to tune the detection criterion based on the morphology of the available data.

References

1.
Yang
,
Z.
,
Ling
,
B. W. K.
, and
Bingham
,
C.
,
2013
, “
Fault Detection and Signal Reconstruction for Increasing Operational Availability of Industrial Gas Turbine
,”
Measurement
,
46
(
6
), pp.
1938
1946
.10.1016/j.measurement.2013.02.016
2.
Venturini
,
M.
, and
Therkorn
,
D.
,
2013
, “
Application of a Statistical Methodology for Gas Turbine Degradation Prognostics to Alstom Field Data
,”
ASME J. Eng. Gas Turbines Power
,
135
(
9
), p.
091603
.10.1115/1.4024952
3.
Lo
,
C.
,
Lynch
,
J. P.
, and
Liu
,
M.
,
2016
, “
Distributed Model-Based Nonlinear Sensor Fault Diagnosis in Wireless Sensor Networks
,”
Mech. Syst. Signal Process.
,
66–67
, pp.
470
484
.10.1016/j.ymssp.2015.05.011
4.
Prasad
,
A.
,
Edward
,
J. B.
, and
Ravi
,
K.
,
2018
, “
A Review on Fault Classification Methodologies in Power Transmission Systems—Part-I
,”
J. Electr. Syst. Inf. Technol.
,
5
(
1
), pp.
48
60
.10.1016/j.jesit.2017.01.004
5.
Prasad
,
A.
,
Edward
,
J. B.
, and
Ravi
,
K.
,
2018
, “
A Review on Fault Classification Methodologies in Power Transmission Systems—Part-II
,”
J. Electr. Syst. Inf. Technol.
,
5
(
1
), pp.
61
67
.
6.
Jombo
,
G.
,
Zhang
,
Y.
, and
Griffiths
,
J. D.
,
2018
, “
Automated Gas Turbine Sensor Fault Diagnostics
,”
ASME
Paper No. GT2018-75229.10.1115/GT2018-75229
7.
Bakdi
,
A.
,
Kouadri
,
A.
, and
Bensmail
,
A.
,
2017
, “
Fault Detection and Diagnosis in a Cement Rotary Kiln Using PCA With EWMA-Based Adaptive Threshold Monitoring Scheme
,”
Control Eng. Pract.
,
66
, pp.
64
75
.10.1016/j.conengprac.2017.06.003
8.
Portnoy
,
I.
,
Melendez
,
K.
,
Pinzon
,
H.
, and
Sanjuan
,
M.
,
2016
, “
An Improved Weighted Recursive PCA Algorithm for Adaptive Fault Detection
,”
Control Eng. Pract.
,
50
, pp.
69
83
.10.1016/j.conengprac.2016.02.010
9.
Navi
,
M.
,
Meskin
,
N.
, and
Davoodi
,
M.
,
2018
, “
Sensor Fault Detection and Isolation of an Industrial Gas Turbine Using Partial Adaptive KPCA
,”
J. Process Control
,
64
, pp.
37
48
.10.1016/j.jprocont.2018.02.002
10.
Rahme
,
S.
, and
Meskin
,
N.
,
2015
, “
Adaptive Sliding Mode Observer for Sensor Fault Diagnosis of an Industrial Gas Turbine
,”
Control Eng. Pract.
,
38
, pp.
57
74
.10.1016/j.conengprac.2015.01.006
11.
Abdelmalek
,
S.
,
Rezazi
,
S.
, and
Azar
,
A. T.
,
2017
, “
Sensor Faults Detection and Estimation for a DFIG Equipped Wind Turbine
,”
Energy Procedia
,
139
, pp.
3
9
.10.1016/j.egypro.2017.11.164
12.
Manservigi
,
L.
,
Venturini
,
M.
,
Ceschini
,
G. F.
,
Bechini
,
G.
, and
Losi
,
E.
,
2019
, “
A General Diagnostic Methodology for Sensor Fault Detection, Classification and Overall Health State Assessment
,”
ASME
Paper No. GT2019-90055.10.1115/GT2019-90055
13.
Ceschini
,
G. F.
,
Gatta
,
N.
,
Venturini
,
M.
,
Hubauer
,
T.
, and
Murarasu
,
A.
,
2018
, “
A Comprehensive Approach for Detection, Classification and Integrated Diagnostics of Gas Turbine Sensors (DCIDS)
,”
ASME J. Eng. Gas Turbines Power
,
140
(
3
), p.
032402
.10.1115/1.4037964
14.
Manservigi
,
L.
,
Venturini
,
M.
,
Ceschini
,
G. F.
,
Bechini
,
G.
, and
Losi
,
E.
,
2019
, “
Validation of an Advanced Diagnostic Methodology for the Identification and Classification of Gas Turbine Sensor Faults by Means of Field Data
,”
ASME
Paper No. GT2019-90056.10.1115/GT2019-90056
15.
Tahan
,
M.
,
Tsoutsanis
,
E.
,
Muhammad
,
M.
, and
Karim
,
Z. A. A.
,
2017
, “
Performance-Based Health Monitoring, Diagnostics and Prognostics for Condition-Based Maintenance of Gas Turbines: A Review
,”
Appl. Energy
,
198
, pp.
122
144
.10.1016/j.apenergy.2017.04.048
16.
Lin
,
Y.
,
Li
,
X.
, and
Hu
,
Y.
,
2018
, “
Deep Diagnostics and Prognostics: An Integrated Hierarchical Learning Framework in PHM Applications
,”
Appl. Soft Comput.
,
72
, pp.
555
564
.10.1016/j.asoc.2018.01.036
17.
Zaidan
,
M. A.
,
Harrison
,
R. F.
,
Mills
,
A. R.
, and
Fleming
,
P. J.
,
2015
, “
Bayesian Hierarchical Models for Aerospace Gas Turbine Engine Prognostics
,”
Expert Syst. Appl.
,
42
(
1
), pp.
539
553
.10.1016/j.eswa.2014.08.007
18.
Zaidan
,
M. A.
,
Mills
,
A. R.
,
Harrison
,
R. F.
, and
Fleming
,
P. J.
,
2016
, “
Gas Turbine Engine Prognostics Using Bayesian Hierarchical Models: A Variational Approach
,”
Mech. Syst. Signal Process.
,
70–71
, pp.
120
140
.10.1016/j.ymssp.2015.09.014
19.
Losi
,
E.
,
Venturini
,
M.
, and
Manservigi
,
L.
,
2019
, “
Gas Turbine Health State Prognostics by Means of Bayesian Hierarchical Models
,”
ASME
Paper No. GT2019-90054.10.1115/GT2019-90054
20.
Gatta
,
N.
,
Venturini
,
M.
,
Manservigi
,
L.
,
Ceschini
,
G. F.
, and
Bechini
,
G.
,
2018
, “
Capability of the Bayesian Forecasting Method to Predict Field Timeseries
,”
ASME J. Eng. Gas Turbines Power
,
140
(
12
), p.
121013
.10.1115/1.4040736
21.
Blesa
,
J.
,
Rotondo
,
D.
,
Puig
,
V.
, and
Nejjari
,
F.
,
2014
, “
FDI and FTC of Wind Turbines Using the Interval Observer Approach and Virtual Actuators/Sensors
,”
Control Eng. Pract.
,
24
, pp.
138
155
.10.1016/j.conengprac.2013.11.018
22.
Alcalay
,
G.
,
Seren
,
C.
,
Hardier
,
G.
,
Delporte
,
M.
, and
Goupil
,
P.
,
2017
, “
Development of Virtual Sensors to Estimate Critical Aircraft Flight Parameters
,”
IFAC PapersOnLine
,
50
(
1
), pp.
14174
14179
.10.1016/j.ifacol.2017.08.2083
23.
Zaccaria
,
V.
,
Aslanidou
,
I.
,
Stenfelt
,
M.
, and
Kyprianidis
,
K.
,
2018
, “
Fleet Monitoring and Diagnostics Framework Based on Digital Twin of Aero-Engines
,”
ASME
Paper No. GT2018-76414.10.1115/GT2018-76414
24.
Tao
,
F.
,
Zhang
,
M.
,
Liu
,
Y.
, and
Nee
,
A. Y. C.
,
2018
, “
Digital Twin Driven Prognostics and Health Management for Complex Equipment
,”
CIRP Ann.
,
67
(
1
), pp.
169
172
.10.1016/j.cirp.2018.04.055
25.
Vathoopan
,
M.
,
Johny
,
M.
,
Zoitl
,
A.
, and
Knoll
,
A.
,
2018
, “
Modular Fault Ascription and Corrective Maintenance Using a Digital Twin
,”
IFAC PapersOnLine
,
51
(
11
), pp.
1041
1046
.10.1016/j.ifacol.2018.08.470
26.
Young
,
G. A.
, and
Smith
,
R. L.
,
2005
,
Essential of Statistical Inference
,
Cambridge University Press
,
Cambridge, UK
.
27.
Ceschini
,
G. F.
,
Gatta
,
N.
,
Venturini
,
M.
,
Hubauer
,
T.
, and
Murarasu
,
A.
,
2018
, “
Resistant Statistical Methodologies for Anomaly Detection in Gas Turbine Dynamic Time Series: Development and Field Validation
,”
ASME J. Eng. Gas Turbines Power
,
140
(
5
), p.
052401
.10.1115/1.4038155
You do not currently have access to this content.