In this paper, the effect of working-fluid replacement within an organic Rankine cycle (ORC) turbine is investigated by evaluating the performance of two supersonic stators operating with different working fluids. After designing the two stators, intended for operation with R245fa and Toluene with stator exit absolute Mach numbers of 1.4 and 1.7, respectively, the performance of each stator is evaluated using ANSYS cfx. Based on the principle that the design of a given stator is dependent on the amount of flow turning, it is hypothesized that a stator's design point can be scaled to alternative working fluids by conserving the Prandtl–Meyer function and the polytropic index within the nozzle. A scaling method is developed and further computational fluid dynamics (CFD) simulations for the scaled operating points verify that the Mach number distributions within the stator, and the nondimensional velocity triangles at the stator exit, remain unchanged. This confirms that the method developed can predict stator performance following a change in the working fluid. Finally, a study investigating the effect of working-fluid replacement on the thermodynamic cycle is completed. The results show that the same turbine could be used in different systems with power outputs varying between 17 and 112 kW, suggesting the potential of matching the same turbine to multiple heat sources by tailoring the working fluid selected. This further implies that the same turbine design could be deployed in different applications, thus leading to economy-of-scale improvements.

References

1.
Markides
,
C. N.
,
2013
, “
The Role of Pumped and Waste Heat Technologies in a High-Efficiency Sustainable Energy Future for the UK
,”
Appl. Therm. Eng.
,
53
(
2
), pp.
197
209
.
2.
Markides
,
C. N.
,
2015
, “
Low-Concentration Solar-Power Systems Based on Organic Rankine Cycles for Distributed-Scale Applications: Overview and Further Developments
,”
Front. Energy Res.
,
3
(
12
), p.
47
.
3.
Qiu
,
G.
,
Shao
,
Y.
,
Li
,
J.
,
Liu
,
H.
, and
Riffat
,
S. B.
,
2012
, “
Experimental Investigation of a Biomass-Fired ORC-Based Micro-CHP for Domestic Applications
,”
Fuel
,
96
, pp.
374
382
.
4.
Freeman
,
J.
,
Hellgardt
,
K.
, and
Markides
,
C. N.
,
2015
, “
An Assessment of Solar-Powered Organic Rankine Cycle Systems for Combined Heating and Power in UK Domestic Applications
,”
Appl Energy
,
138
, pp.
605
620
.
5.
Freeman
,
J.
,
Hellgardt
,
K.
, and
Markides
,
C. N.
,
2017
, “
Working Fluid Selection and Electrical Performance Optimisation of a Domestic Solar-ORC Combined Heat and Power System for Year-round Operating in the UK
,”
Appl. Energy
,
186
(Pt. 3), pp.
291
303
.
6.
Lang
,
W.
,
Colonna
,
P.
, and
Almbauer
,
R.
,
2013
, “
Assessment of Waste Heat Recovery From a Heavy-Duty Truck Engine by Means of an ORC Turbogenerator
,”
ASME J. Eng. Gas Turbines Power
,
135
(
4
), p.
042313
.
7.
Colonna
,
P.
,
Casati
,
E.
,
Trapp
,
C.
,
Mathijssen
,
T.
,
Larjola
,
J.
,
Turunen-Saaresti
,
T.
, and
Uusitalo
,
A.
,
2015
, “
Organic Rankine Cycle Power Systems: From the Concept to Current Technology, Applications, and an Outlook to the Future
,”
ASME J. Eng. Gas Turbines Power
,
137
(
10
), p.
100801
.
8.
Thompson
,
P. A.
,
1971
, “
A Fundamental Derivative in Gas Dynamics
,”
Phys. Fluids
,
14
(
9
), pp.
1843
1849
.
9.
Colonna
,
P.
, and
Guardone
,
A.
,
2006
, “
Molecular Interpretation of Nonclassical Gas Dynamics of Dense Vapors Under the Van Der Waals Model
,”
Phys. Fluids
,
18
(
5
), p.
056101
.
10.
Kluwick
,
A.
,
2017
, “
Non-Ideal Compressible Fluid Dynamics: A Challenge for Theory
,”
J. Phys. Conf. Ser.
,
821
(
1
), p.
012001
.
11.
Mathijssen
,
T.
,
Gallo
,
M.
,
Casati
,
E.
,
Nannan
,
N. R.
,
Zamfirescu
,
C.
,
Guardone
,
A.
, and
Colonna
,
P.
,
2015
, “
The Flexible Asymmetric Shock Tube (FAST): A Ludwieg Tube Facility for Wave Propagation Measurements in High-Temperature Vapours of Organic Fluids
,”
Exp. Fluids
,
56
, p.
195
.
12.
Gori
,
V.
,
Vimercati
,
D.
, and
Guardone
,
A.
,
2017
, “
Non-Ideal Compressible-Fluid Effects in Oblique Shock Waves
,”
J. Phys. Conf. Ser.
,
821
(
1
), p.
012003
.
13.
Alferez
,
N.
, and
Touber
,
E.
,
2017
, “
Shock-Induced Energy Transfers in Dense Gases
,”
J. Phys. Conf. Ser.
,
821
(
1
), p.
012019
.
14.
Aldo
,
A. C.
, and
Argrow
,
B. M.
,
1995
, “
Dense Gas Flow in Minimum Length Nozzles
,”
ASME J. Fluids Eng.
,
117
(
2
), pp.
270
276
.
15.
Hoffren
,
J.
,
Talonpoika
,
T.
,
Larjola
,
J.
, and
Siikonen
,
T.
,
2002
, “
Numerical Simulation of Real-Gas Flow in a Supersonic Turbine Nozzle Ring
,”
ASME J. Eng. Gas Turbines Power
,
124
(
4
), pp.
395
403
.
16.
Colonna
,
P.
,
Rebay
,
S.
,
Harinck
,
J.
, and
Guardone
,
A.
,
2006
, “
Real-Gas Effects in ORC Turbine Flow Simulations: Influence of Thermodynamic Models on Flow Fields and Performance Parameters
,”
European Conference on Computational Fluid Dynamics
, Egmond aan Zee, The Netherlands, Sept. 5–8.
17.
Harinck
,
J.
,
Turunen-Saaresti
,
T.
,
Colonna
,
P.
,
Rebay
,
S.
, and
van Buijtenen
,
J.
,
2010
, “
Computational Study of a High-Expansion Ratio Radial Organic Rankine Cycle Turbine Stator
,”
ASME J. Eng. Gas Turbines Power
,
132
(
5
), p.
054501
.
18.
Harinck
,
J.
,
Pasquale
,
D.
,
Pecnik
,
R.
,
Buijtenen
,
J. V.
, and
Colonna
,
P.
,
2013
, “
Performance Improvement of a Radial Organic Rankine Cycle Turbine by Means of Automated Computational Fluid Dynamic Design
,”
Proc. Inst. Mech. Eng., Part A
,
227
(
6
), pp.
637
645
.
19.
Pasquale
,
D.
,
Ghidoni
,
A.
, and
Rebay
,
S.
,
2013
, “
Shape Optimization of an Organic Rankine Cycle Radial Turbine Nozzle
,”
ASME J. Eng. Gas Turbines Power
,
135
(
4
), p.
042308
.
20.
Persico
,
G.
,
2017
, “
Evolutionary Optimization of Centrifugal Nozzles for Organic Vapours
,”
J. Phys. Conf. Ser.
,
821
(
1
), p.
012015
.
21.
Pini
,
M.
,
Persico
,
G.
,
Pasquale
,
D.
, and
Rebay
,
S.
,
2015
, “
Adjoint Method for Shape Optimization in Real-Gas Flow Applications
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
032604
.
22.
Bufi
,
E. A.
, and
Cinnella
,
P.
,
2017
, “
Robust Optimization of Supersonic ORC Nozzle Guide Vanes
,”
J. Phys. Conf. Ser.
,
821
(
1
), p.
012014
.
23.
Wheeler
,
A. P. S.
, and
Ong
,
J.
,
2013
, “
The Role of Dense Gas Dynamics on Organic Rankine Cycle Turbine Performance
,”
ASME J. Eng. Gas Turbines Power
,
135
(
10
), p.
102603
.
24.
Wheeler
,
A. P. S.
, and
Ong
,
J.
,
2014
, “A Study of the Three-Dimensional Unsteady Real-Gas Flows Within a Transonic ORC Turbine,”
ASME
Paper No. GT2014-25475.
25.
Spinelli
,
A.
,
Pini
,
M.
,
Dossena
,
V.
,
Gaetani
,
P.
, and
Casella
,
F.
,
2013
, “
Design, Simulation, and Construction of a Test Rig for Organic Vapors
,”
ASME J. Eng. Gas Turbines Power
,
135
(
4
), p.
042304
.
26.
Reinker
,
F.
,
Hasselmann
,
K.
,
aus der Wiesche
,
S.
, and
Kenig
,
E. Y.
,
2016
, “
Thermodynamics and Fluid Mechanics of a Closed Blade Cascade Wind Tunnel for Organic Vapors
,”
ASME J. Eng. Gas Turbines Power
,
138
(
5
), p.
052601
.
27.
Durá Galiana
,
F. J.
,
Wheeler
,
A. P.
, and
Ong
,
J.
,
2016
, “
A Study of Trailing-Edge Losses in Organic Rankine Cycle Turbines
,”
ASME J. Turbomach.
,
138
(
12
), p.
121003
.
28.
Head
,
A. J.
,
Servi
,
C. D.
,
Casati
,
E.
,
Pini
,
M.
, and
Colonna
,
P.
,
2016
, “Preliminary Design of the ORCHID: A Facility for Studying Non-Ideal Compressible Fluid Dynamics and Testing ORC Expanders,”
ASME
Paper No. GT2016-56103.
29.
Spinelli
,
A.
,
Cozzi
,
F.
,
Dossena
,
V.
,
Gaetani
,
P.
,
Zocca
,
M.
, and
Guardone
,
A.
,
2016
, “Experimental Investigation of a Non-Ideal Expansion Flow of Siloxane Vapor MDM,”
ASME
Paper No. GT2016-57357.
30.
Macchi
,
E.
, and
Astolfi
,
M.
,
2017
,
Organic Rankine Cycle (ORC) Power Systems
,
Woodhead Publishing
,
Sawston, UK
.
31.
White
,
M.
, and
Sayma
,
A. I.
,
2016
, “Investigating the Effect of Changing the Working Fluid on the Three-Dimensional Flow Within Organic Rankine Cycle Turbines,”
ASME
Paper No. GT2016-56106.
32.
Wong
,
C. S.
, and
Krumdieck
,
S.
,
2016
, “
Scaling of Gas Turbine From Air to Refrigerants for Organic Rankine Cycle Using Similarity Concept
,”
ASME J. Eng. Gas Turbines Power
,
138
(
6
), p.
061701
.
33.
Invernizzi
,
C. M.
,
Iora
,
P.
,
Preßinger
,
M.
, and
Manzolini
,
G.
,
2016
, “
HFOs as Substitute for R-134a as Working Fluids in ORC Power Plants: A Thermodynamic Assessment and Thermal Stability Analysis
,”
Appl. Therm. Eng.
,
103
, pp.
790
797
.
34.
Zhang
,
L.
,
Zhuge
,
W.
,
Zhang
,
Y.
, and
Chen
,
T.
,
2017
, “
Similarity Theory Based Radial Turbine Performance and Loss Mechanism Comparison Between R245fa and Air for Heavy-Duty Diesel Engine Organic Rankine Cycles
,”
Entropy
,
19
(
1
), p.
25
.
35.
White
,
M.
, and
Sayma
,
A. I.
,
2015
, “
System and Component Modelling and Optimisation for an Efficient 10 Kwe Low-Temperature Organic Rankine Cycle Utilising a Radial Inflow Expander
,”
Proc. Inst. Mech. Eng., Part A
,
229
(
7
), pp.
795
809
.
36.
Costall
,
A. W.
,
Gonzalex-Hernandez
,
A.
,
Newton
,
P. J.
, and
Martinez-Botas
,
R. F.
,
2015
, “
Design Methodology for Radial Turbo Expanders in Mobile Organic Rankine Cycle Applications
,”
Appl. Energy
,
157
, pp.
729
743
.
37.
Moustapha
,
H.
,
Zelesky
,
M. F.
,
Baines
,
N. C.
, and
Japiske
,
D.
,
2003
,
Axial and Radial Turbines
,
Concepts ETI
,
White River Junction, VT
.
38.
Dixon
,
S. L.
, and
Hall
,
C. A.
,
2013
,
Fluid Mechanics and Thermodynamics of Turbomachinery
, 7th ed.,
Butterworth-Heinemann
, Oxford, UK.
39.
Cramer
,
M. S.
, and
Crickenberger
,
A. B.
,
1992
, “
Prandtl-Meyer Function for Dense Gases
,”
AIAA J.
,
30
(
2
), pp.
561
564
.
40.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2013
, “NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP,” Version 9.1, Standard Reference Data Program, National Institute of Standards and Technology, Gaithersburg, MD.
41.
White
,
M.
,
Sayma
,
A. I.
, and
Markides
,
C. N.
,
2017
, “
Supersonic Flow of Non-Ideal Fluids in Nozzles: An Application of Similitude Theory and Lessons for ORC Turbine Design and Flexible Use Considering System Performance
,”
J. Phys. Conf. Ser.
,
821
(
1
), p.
012002
.
42.
Rinaldi
,
E.
,
Pecnik
,
R.
, and
Colonna
,
P.
,
2015
, “
Unsteady Operation of a Highly Supersonic Organic Rankine Cycle Turbine
,”
ASME J. Turbomach
,
138
(
12
), p.
121010
.
43.
Maizza
,
V.
, and
Maizza
,
A.
,
1996
, “
Working Fluids in Non-Steady Flows for Waste Energy Recovery Systems
,”
Appl. Therm. Eng.
,
16
(
7
), pp.
579
590
.
44.
White
,
M.
, and
Sayma
,
A. I.
,
2015
, “
The Application of Similitude Theory for the Performance Prediction of Radial Turbines Within Small-Scale Low-Temperature Organic Rankine Cycles
,”
ASME J. Eng. Gas Turbines Power
,
137
(
12
), p.
122605
.
You do not currently have access to this content.