Particulate matters (PM) accumulation through a low-pressure exhaust gas recirculation (LP-EGR) path may hinder to obtain the desired LP-EGR rate and thus causes an increase of nitrogen oxides (NOx). The degree of lack of the LP-EGR rate should be detected, i.e., an LP-EGR fault, and a remedy to compensate for the lack of LP-EGR rate should be a mandate to suppress NOx emission, i.e., a fault management. In order to accomplish those objectives, this paper proposes an LP-EGR fault management system, which consists of a fault diagnosis algorithm, fault-tolerant control algorithm, and an LP-EGR rate model. The model applies a combustion parameter derived from in-cylinder pressure information to the conventional orifice valve model. Consequently, the LP-EGR rate estimation was improved to the maximum error of 2.38% and root-mean-square-error (RMSE) of 1.34% at various operating conditions even under the fault condition compared to that of the conventional model with the maximum error of 7.46% and RMSE of 5.39%. Using this LP-EGR rate model as a virtual sensor, the fault diagnosis algorithm determines an LP-EGR fault state. Based on the state, the fault-tolerant control determines whether or not to generate the offset of the exhaust throttle valve (ETV) position. This offset combines with the look-up table (LUT)-based feedforward controller to control an LP-EGR rate. As a result of real-time verification of the fault management system in the fault condition, the NOx emission decreased by up to about 15%.

References

1.
Agarwal
,
D.
,
Singh
,
S. K.
, and
Agarwal
,
A. K.
,
2011
, “
Effect of Exhaust Gas Recirculation (EGR) on Performance, Emissions, Deposits and Durability of a Constant Speed Compression Ignition Engine
,”
Appl. Energy
,
88
(
8
), pp.
2900
2907.
2.
Luján
,
J. M.
,
Climent
,
H.
,
Pla
,
B.
,
Rivas-Perea
,
M. E.
,
François
,
N.-Y.
,
Borges-Alejo
,
J.
, and
Soukeur
,
Z.
,
2015
, “
Exhaust Gas Recirculation Dispersion Analysis Using In-Cylinder Pressure Measurements in Automotive Diesel Engines
,”
Appl. Therm. Eng.
,
89
, pp.
459
468
.
3.
Cho
,
K.
,
Han
,
M.
,
Wagner
,
R. M.
, and
Sluder
,
C. S.
,
2008
, “
Mixed-Source EGR for Enabling High Efficiency Clean Combustion Modes in a Light-Duty Diesel Engine
,”
SAE Int. J. Engines
,
1
(1), pp. 457–465.
4.
Heuwetter
,
D.
,
Glewen
,
W.
,
Meyer
,
C.
,
Foster
,
D. E.
,
Andrie
,
M.
, and
Krieger
,
R.
,
2011
, “
Effects of Low Pressure EGR on Transient Air System Performance and Emissions for Low Temperature Diesel Combustion
,”
SAE
Paper No. 2011-24-0062.
5.
Reifarth
,
S.
, and
Angstrom
,
H.-E.
,
2010
, “
Transient EGR in a High-Speed DI Diesel Engine for a Set of Different EGR-Routings
,”
SAE Int. J. Engines
,
3
(1), pp. 1071–1078.
6.
Park
,
I.
,
Hong
,
S.
, and
Sunwoo
,
M.
,
2014
, “
Robust Air-to-Fuel Ratio and Boost Pressure Controller Design for the EGR and VGT Systems Using Quantitative Feedback Theory
,”
IEEE Trans. Control Syst. Technol.
,
22
(
6
), pp.
2218
2231
.
7.
van Nieuwstadt
,
M. J.
,
Kolmanovsky
,
I. V.
,
Moraal
,
P. E.
,
Stefanopoulou
,
A.
, and
Jankovic
,
M.
,
2000
, “
EGR-VGT Control Schemes: Experimental Comparison for a High-Speed Diesel Engine
,”
IEEE Control Syst.
,
20
(
3
), pp.
63
79
.
8.
Park
,
Y.
,
Park
,
I.
,
Lee
,
J.
,
Min
,
K.
, and
Sunwoo
,
M.
,
2013
, “
Nonlinear Compensators of Exhaust Gas Recirculation and Variable Geometry Turbocharger Systems Using Air Path Models for a CRDI Diesel Engine
,”
ASME J. Eng. Gas Turbines Power
,
136
(
4
), p.
041602
.
9.
Jung
,
D.
,
Min
,
K.
,
Park
,
Y.
,
Pyo
,
S.
, and
Sunwoo
,
M.
,
2016
, “
Feedforward Controller Design for EGR and VGT Systems Based on Cylinder Pressure Information and Air Path Model
,”
IFAC-Pap. OnLine
,
49
(
11
), pp.
596
603
.
10.
Shutty
,
J.
,
Joergl
,
V.
,
Mueller
,
V.
, and
Roth
,
D. B.
,
2014
, “
Controlling Exhaust Gas Recirculation in a Turbocharged Engine System
,” Auburn Hills, MI, U.S. Patent. No.
US8630787 B2
.https://www.google.com/patents/US8630787
11.
Park
,
Y.
, and
Bae
,
C.
,
2014
, “
Experimental Study on the Effects of High/Low Pressure EGR Proportion in a Passenger Car Diesel Engine
,”
Appl. Energy
,
133
, pp.
308
316
.
12.
Nishio
,
Y.
,
Hasegawa
,
M.
,
Tsutsumi
,
K.
,
Goto
,
J.
, and
Iizuka
,
N.
,
2013
, “
Model Based Control for Dual EGR System With Intake Throttlein New Generation 1.6 L Diesel Engine
,”
SAE
Paper No. 2011-01-2066.
13.
Nam
,
K.
,
Yu
,
J.
, and
Cho
,
S.
,
2011
, “
Improvement of Fuel Economy and Transient Control in a Passenger Diesel Engine Using LP(Low Pressure)-EGR
,”
SAE
Paper No. 2011-01-0400.
14.
Grondin
,
O.
,
Moulin
,
P.
, and
Chauvin
,
J.
, 2009, “
Control of a Turbocharged Diesel Engine Fitted With High Pressure and Low Pressure Exhaust Gas Recirculation Systems
,”
48th IEEE Conference on Decision and Control Held Jointly With 28th Chinese Control Conference
(
CDC/CCC
), Shanghai, China, Dec. 15–18, pp.
6582
6589
.
15.
Brasseur
,
G.
, 1997, “
Robust Automotive Sensors
,”
IEEE Instrumentation and Measurement Technology Conference: Sensing, Processing, Networking
(
IMTC
), Ottawa, ON, Canada, May 19–21, pp.
1278
1283
.
16.
Yoshimura
,
T.
,
Miyai
,
M.
, and
Nakamura
,
H.
,
2012
, “
Transient Exhaust Gas Recirculation Ratio Measurement Utilizing Heated NDIR Method
,”
SAE
Paper No. 2012-01-0886.
17.
Khaled
,
N.
,
Cunningham
,
M.
,
Pekar
,
J.
,
Fuxman
,
A.
, and
Santin
,
O.
,
2014
, “
Multivariable Control of Dual Loop EGR Diesel Engine With a Variable Geometry Turbo
,”
SAE
Paper No. 2014-01-1357.
18.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
, New York.
19.
Min
,
K.
,
Jung
,
D.
, and
Sunwoo
,
M.
,
2015
, “
Air System Modeling of Light-Duty Diesel Engines With Dual-Loop EGR and VGT Systems
,”
IFAC-Pap. OnLine
,
48
(
15
), pp.
38
44
.
20.
Inseok
,
P.
,
Wootaik
,
L.
, and
Myoungho
,
S.
,
2012
, “
Application Software Modeling and Integration Methodology Using AUTOSAR-Ready Light Software Architecture
,”
Trans. Korean Soc. Automot. Eng.
,
20
(
6
), pp.
117
125
.
21.
Kangseok
,
L.
,
Inseok
,
P.
,
Myoungho
,
S.
, and
Wootaik
,
L.
,
2013
, “
AUTOSAR-Ready Light Software Architecture for Automotive Embedded Control Systems
,”
Trans. Korean Soc. Automot. Eng.
,
21
(
1
), pp.
68
77
.
22.
Kumar Maurya
,
R.
,
Pal
,
D. D.
, and
Kumar Agarwal
,
A.
,
2013
, “
Digital Signal Processing of Cylinder Pressure Data for Combustion Diagnostics of HCCI Engine
,”
Mech. Syst. Signal Process.
,
36
(
1
), pp.
95
109
.
23.
Savitzky
,
A.
, and
Golay
,
M. J. E.
,
1964
, “
Smoothing and Differentiation of Data by Simplified Least Squares Procedures
,”
Anal. Chem.
,
36
(
8
), pp.
1627
1639
.
24.
Lee
,
K.
,
2005
, “
Closed-Loop Control of Start of Combustion for Common-Rail Direct Injection Diesel Engines
,” Ph.D. thesis, Hanyang University, Seoul, South Korea.
25.
Lee
,
H.
,
Lee
,
J.
, and
Sunwoo
,
M.
,
2014
, “
Fault Diagnosis of Exhaust Gas Recirculation and Variable Geometry Turbocharger Systems in a Passenger Car Diesel Engine Based on a Sliding Mode Observer for Air System States Estimation
,”
ASME J. Dyn. Syst., Meas., Control
,
136
(
3
), p.
031016
.
You do not currently have access to this content.