A change in the combustion concept of gas turbines from conventional isobaric to constant volume combustion, such as in pulse detonation combustion (PDC), promises a significant increase in gas turbine efficiency. Current research focuses on the realization of reliable PDC operation and its challenging integration into a gas turbine. The topic of pollutant emissions from such systems has so far received very little attention. Few rare studies indicate that the extreme combustion conditions in PDC systems can lead to high emissions of nitrogen oxides (NOx). Therefore, it is essential already at this stage of development to begin working on primary measures for NOx emissions reduction if commercialization is to be feasible. The present study evaluates the potential of different primary methods for reducing NOx emissions produced during PDC of hydrogen. The considered primary methods involve utilization of lean combustion mixtures or its dilution by steam injection or exhaust gas recirculation. The influence of such measures on the detonability of the combustion mixture has been evaluated based on detonation cell sizes modeled with detailed chemistry. For the mixtures and operating conditions featuring promising detonability, NOx formation in the detonation wave has been simulated by solving the one-dimensional (1D) reacting Euler equations. The study enables an insight into the potential and limitations of considered measures for NOx emissions reduction and lays the groundwork for optimized operation of PDC systems.

References

1.
Zel'dovich
,
Y. B.
,
2006
, “
To the Question of Energy Use of Detonation Combustion
,”
J. Propul. Power
,
22
(3), pp. 588–592.https://arc.aiaa.org/doi/10.2514/1.22705
2.
Fickett
,
W.
, and
Davis
,
W. C.
,
2001
,
Detonation Theory and Experiment
, Vol.
11
,
Dover
, Mineola, NY, pp.
35
38
.
3.
Jacobs
,
S. J.
, 1956, “
The Energy of Detonation
,” U.S. Naval Ordnance Laboratory, White Oak, MD, NAVORD Report No.
4366
.http://www.dtic.mil/dtic/tr/fulltext/u2/113271.pdf
4.
Bellini
,
R.
, and
Lu
,
F. K.
,
2010
, “
Exergy Analysis of a Pulse Detonation Power Device
,”
J. Propul. Power
,
26
(
4
), pp.
875
877
.
5.
Goldmeer
,
J.
,
Tangirala
,
V.
, and
Dean
,
A.
,
2008
, “
System-Level Performance Estimation of a Pulse Detonation Based Hybrid Engine
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
011201
.
6.
Rasheed
,
A.
,
Furman
,
A. H.
, and
Dean
,
A. J.
,
2009
, “
Pressure Measurements and Attenuation in a Hybrid Multitube Pulse Detonation Turbine System
,”
J. Propul. Power
,
25
(
1
), pp.
148
161
.
7.
Rasheed
,
A.
,
Furman
,
A. H.
, and
Dean
,
A. J.
,
2011
, “
Experimental Investigation of the Performance of a Multitube Pulse Detonation Turbine System
,”
J. Propul. Power
,
27
(
3
), pp.
586
596
.
8.
Rouser
,
K. P.
,
King
,
P. I.
,
Schauer
,
F. R.
,
Sondergaard
,
R.
, and
Hoke
,
J. L.
,
2010
, “
Unsteady Performance of a Turbine Driven by a Pulse Detonation Engine
,”
AIAA
Paper No. 2010-1116.
9.
Caldwell
,
N.
,
Brunnet
,
R.
, and
Gutmark
,
E.
,
2008
, “
Experimental Analysis of a Hybrid Pulse Detonation Combustor/Gas Turbine Engine
,”
AIAA
Paper No. 2008-121.
10.
Caldwell
,
N.
,
Glaser
,
A.
, and
Gutmark
,
E.
,
2006
, “
Performance Measurements of a Pulse Detonation Engine Array Integrated With a Turbine
,”
AIAA
Paper No. 2006-4307.
11.
Panicker
,
P. K.
,
Li
,
J. M.
,
Lu
,
F. K.
, and
Wilson
,
D. R.
,
2007
, “
Application of Pulsed Detonation Engine for Electric Power Generation
,”
AIAA
Paper No. 2007-1246.
12.
Frolov
,
S. M.
,
Basevich
,
V. Y.
,
Aksenov
,
V. S.
,
Gusev
,
P. A.
,
Ivanov
,
V. S.
,
Medvedev
,
S. N.
,
Avdeev
,
K. A.
, and
Frolov
,
F. S.
,
2011
, “
Formation of Nitrogen Oxides in Detonation Waves
,”
Russ. J. Phys. Chem. B
,
5
(
4
), pp.
661
663
.
13.
Deng
,
J. X.
,
Zheng
,
L. X.
,
Yan
,
C. J.
,
Jiang
,
L. Y.
,
Xiong
,
C.
, and
Li
,
N.
,
2009
, “
Experimental Investigation of a Pulse Detonation Combustor-Turbine Hybrid System
,”
AIAA
Paper No. 2009-506.
14.
King, R., ed.,
2015
,
Active Flow and Combustion Control
,
Springer
, Berlin.
15.
Panicker
,
P. K.
,
2008
, “
The Development and Testing of Pulsed Detonation Engine Ground Demonstrators
,”
Ph.D. dissertation
, The University of Texas at Arlington, Arlington, TX.http://arc.uta.edu/publications/td_files/PKP-Dissertation.pdf
16.
Roy
,
G. D.
,
Frolov
,
S. M.
,
Borisov
,
A. A.
, and
Netzer
,
D. W.
,
2004
, “
Pulse Detonation Propulsion: Challenges, Current Status, and Future Perspective
,”
Prog. Energy Combust. Sci.
,
30
(
6
), pp.
545
672
.
17.
Gülen
,
S. C.
,
2013
, “
Constant Volume Combustion: The Ultimate Gas Turbine Cycle
,” Gas Turbine World,
43
(6), pp. 20–27.
18.
Yungster
,
S.
,
Radhakrishnan
,
K.
, and
Breisacher
,
K.
,
2004
, “
Computational and Experimental Study of NOx Formation in Hydrogen-Fueled Pulse Detonation Engines
,”
AIAA
Paper No. 2004-3307.
19.
Yungster
,
S.
, and
Breisacher
,
K.
,
2005
, “
Study of NOx Formation in Hydrocarbon-Fueled Pulse Detonation Engines
,”
AIAA
Paper No. 2005-4210.
20.
Giuliani
,
F.
,
Lang
,
A.
,
Irannezhad
,
M.
, and
Lundbladh
,
A.
,
2010
, “
Pulse Detonation as an Option for Future Innovative Gas Turbine Combustion Technologies: A Concept Assessment
,”
27th Congress of International Council of the Aeronautical Sciences
, Nice, France, Sept. 19–24, Paper No.
ICAS 2010-4.3.2
.http://publications.lib.chalmers.se/publication/149885-pulse-detonation-as-an-option-for-future-innovative-gas-turbine-combustion-technologies-a-concept-as
21.
Tsuji
,
H.
,
Gupta
,
A.
,
Hasegawa
,
T.
,
Katsuki
,
M.
,
Kishimoto
,
K.
, and
Morita
,
M.
,
2003
,
High Temperature Air Combustion: From Energy Conservation to Pollution Reduction
,
CRC Press
,
Boca Raton, FL
.
22.
Wünning
,
J. G.
,
2003
, “
FLOX®—Flameless Combustion
,”
Thermprocess Symposium
, Düsseldorf, Germany.http://www.flox.com/documents/03_TP.pdf
23.
Cain
,
B.
,
Robertson
,
T.
, and
Newby
,
J.
,
2000
, “
The Development and Application of Direct Fuel Injection Techniques for Emissions Reduction in High Temperature Furnaces
,”
Second International Seminar on High Temperature Combustion
, Stockholm, Sweden, Jan. 17–18.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.601.2033&rep=rep1&type=pdf
24.
Cavaliere
,
A.
, and
de Joannon
,
M.
,
2004
, “
Mild Combustion
,”
Prog. Energy Combust. Sci.
,
30
(
4
), pp.
329
366
.
25.
Lückerath
,
R.
,
Meier
,
W.
, and
Aigner
,
M.
,
2008
, “
FLOX® Combustion at High Pressure With Different Fuel Compositions
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
011505
.
26.
Flamme
,
M.
,
2004
, “
New Combustion Systems for Gas Turbines (NGT)
,”
Appl. Therm. Eng.
,
24
(
11
), pp.
1551
1559
.
27.
Weber
,
R.
,
Smart
,
J. P.
, and
Kamp
,
W.
,
2005
, “
On the (MILD) Combustion of Gaseous, Liquid, and Solid Fuels in High Temperature Preheated Air
,”
Proc. Combust. Inst.
,
30
(
2
), pp.
2623
2629
.
28.
Ristic
,
D.
,
Schneider
,
M.
,
Schuster
,
A.
,
Scheffknecht
,
G.
, and
Wünning
,
J. G.
,
2008
, “
Investigation of NOx Formation for Flameless Coal Combustion
,”
Seventh High Temperature Air Combustion and Gasification International Symposium
(
HiTACG
), Phuket, Thailand, Jan. 13–16.http://floxural.ru/Original/08_INVESTIGATIONOFNOxFORMATIONFORFLAMELESSCOALCOMBUSTION.pdf
29.
Lefebvre
,
A. H.
,
1998
,
Gas Turbine Combustion
, 2nd ed.,
Taylor & Francis
, Abingdon, UK.
30.
Göke
,
S.
, and
Paschereit
,
C. O.
,
2013
, “
Influence of Steam Dilution on Nitrogen Oxide Formation in Premixed Methane/Hydrogen Flames
,”
J. Propul. Power
,
29
(
1
), pp.
249
260
.
31.
Bhargava
,
A.
,
Colket
,
M.
,
Sowa
,
W.
,
Casleton
,
K.
, and
Maloney
,
D.
,
2000
, “
An Experimental and Modeling Study of Humid Air Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
,
122
(
3
), pp.
405
411
.
32.
Göke
,
S.
,
Schimek
,
S.
,
Terhaar
,
S.
,
Reichel
,
T.
,
Göckeler
,
K.
,
Krüger
,
O.
,
Fleck
,
J.
,
Griebel
,
P.
, and
Paschereit
,
O. C.
,
2014
, “
Influence of Pressure and Steam Dilution on NOx and CO Emissions in a Premixed Natural Gas Flame
,”
ASME J. Eng. Gas Turbines Power
,
136
(
9
), p.
091508
.
33.
Kaneshige
,
M.
, and
Shepherd
,
J. E.
,
1997
, “
Detonation Database
,” Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena, CA, Explosion Dynamics Laboratory Report No.
FM97-8
.https://authors.library.caltech.edu/25827/1/FM97-8.pdf
34.
Ng
,
H. D.
, and
Lee
,
J. H.
,
2008
, “
Comments on Explosion Problems for Hydrogen Safety
,”
J. Loss Prev. Process Ind.
,
21
(
2
), pp.
136
146
.
35.
Kao
,
S.
, and
Shepherd
,
J. E.
,
2008
, “
Numerical Solution Methods for Control Volume Explosions and ZND Detonation Structure
,” California Institute of Technology, Pasadena, CA, GALCIT Report No.
fm2006.007
.http://www2.galcit.caltech.edu/~stbrowne/Papers/CVZND.pdf
36.
Zeleznik
,
F.
,
1962
, “
Calculation of Detonation Properties and Effect of Independent Parameters on Gaseous Detonations
,”
ARS J.
,
32
(
4
), pp.
606
615
.
37.
Ng
,
H. D.
,
Ju
,
Y.
, and
Lee
,
J. H.
,
2007
, “
Assessment of Detonation Hazards in High-Pressure Hydrogen Storage From Chemical Sensitivity Analysis
,”
Int. J. Hydrogen Energy
,
32
(
1
), pp.
93
99
.
38.
Schultz
,
E.
, and
Shepherd
,
J. E.
,
2000
, “
Validation of Detailed Reaction Mechanisms for Detonation Simulation
,” Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena, CA, Explosion Dynamics Laboratory Report No.
FM99-5
.https://authors.library.caltech.edu/25820/1/FM99-5.pdf
39.
Burke
,
M. P.
,
Chaos
,
M.
,
Ju
,
Y.
,
Dryer
,
F. L.
, and
Klippenstein
,
S. J.
,
2012
, “
Comprehensive H2/O2 Kinetic Model for High-Pressure Combustion
,”
Int. J. Chem. Kinet.
,
44
(7), pp. 444–474.
40.
Ciccarelli
,
G.
,
Ginsberg
,
T.
,
Boccio
,
J.
,
Economos
,
C.
,
Sato
,
K.
, and
Kinoshita
,
M.
,
1994
, “
Detonation Cell Size Measurements and Predictions in Hydrogen-Air-Steam Mixtures at Elevated Temperatures
,”
Combust. Flame
,
99
(
2
), pp.
212
220
.
41.
Ciccarelli
,
G.
,
Ginsberg
,
T.
,
Boccio
,
J.
,
Finfrock
,
C.
,
Gerlach
,
L.
,
Tagawa
,
H.
, and
Malliakos
,
A.
,
1997
, “
Detonation Cell Size Measurements in High-Temperature Hydrogen-Air-Steam Mixtures at the BNL High-Temperature Combustion Facility
,” Brookhaven National Laboratory, Upton, NY, Technical Report No.
NUREG/CR-6391
.https://inis.iaea.org/search/search.aspx?orig_q=RN:29036402
42.
Gordon
,
S.
, and
McBride
,
B. J.
,
1994
, “
Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications
,” NASA Lewis Research Center, Cleveland, OH, Technical Report No.
NASA RP-1311
https://www.grc.nasa.gov/www/CEAWeb/RP-1311.htm.
43.
von Neumann
,
J.
,
1963
, “
Theory of Detonation Waves. Progress Report to the National Defense Research Committee Div. B, OSRD-549 (April 1, 1942. PB 31090)
,”
John von Neumann: Collected Works
, Vol.
6
,
A. H.
Taub
, ed.,
Pergamon Press
,
New York
, pp.
1903
1957
.
44.
Berndt
,
P.
, and
Klein
,
R.
,
2016
, “
Modeling the Kinetics of the Shockless Explosion Combustion
,”
Combust. Flame
,
175
, pp. 16–26.
45.
Berndt
,
P.
,
Klein
,
R.
, and
Paschereit
,
C. O.
,
2016
, “
A Kinetics Model for the Shockless Explosion Combustion
,”
ASME
Paper No. GT2016-57678.
46.
Hewson
,
J. C.
, and
Bollig
,
M.
,
1996
, “
Reduced Mechanisms for NOx Emissions From Hydrocarbon Diffusion Flames
,”
Symp. (Int.) Combust.
,
26
(
2
), pp.
2171
2179
.
47.
Gray
,
J.
,
Paschereit
,
C.
, and
Moeck
,
J.
,
2014
, “
An Experimental Study of Different Obstacle Types for Flame Acceleration and DDT
,”
Active Flow and Combustion Control
(Notes on Numerical Fluid Mechanics and Multidisciplinary Design),
R.
King
, ed., Springer, Cham, Switzerland.
You do not currently have access to this content.