The transient heat transfer facility (THTF) was developed to test full-scale high pressure compressor and turbine casing air systems using gas turbine engine representative secondary air system conditions. Transient casing response together with blade and disk responses governs achievable tip clearances in both compressors and turbines. This paper investigates the use of air impingement as a means to speed up the casing response. The thermal growth of the casing was characterized by surface temperature rise over a given period to assess achievable dynamic response. The experimental setup resembles a typical aircraft engine with features that can lead to circumferential temperature nonuniformities, as evident from the experimental results. The experimental data were compared against numerical predictions from a conjugate heat transfer (CHT) model. The studies show the significance of analyzing the full annulus, at engine representative conditions and the benefit of an impingement array to potentially speed up casing response for future engines.

References

1.
Lattime
,
S. B.
, and
Steinetz
,
B. M.
,
2002
, “
Turbine Engine Clearance Control Systems: Current Practices and Future Directions
,”
Technical Report
, NASA Technical Memorandum, Report No. NASA/TM–2002-211794.
2.
Denton
,
J.
,
1993
, “
Loss Mechanisms in Turbo Machines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
3.
Han
,
J.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2000
,
Gas Turbine Heat Transfer and Cooling Technology
, 2nd ed.,
Taylor and Francis
, Boca Raton, Florida.
4.
Ameri
,
A. A.
, and
Bunker
,
R. S.
,
1999
, “
Heat Transfer and Flow on the First-Stage Blade Tip of a Power Generation Gas Turbine—Part 2: Simulation Results
,”
ASME J. Turbomach.
,
122
(
2
), pp.
272
277
.
5.
Mayle
,
R.
, and
Metzger
,
D.
,
1982
, “
Heat Transfer at the Tip of an Unshrouded Turbine Blade
,”
Seventh International Heat Transfer Conference
,
Hemisphere Publishing
, Munich, Germany, pp. 87–92.
6.
Bunker
,
R. S.
,
Bailey
,
J. C.
, and
Ameri
,
A. A.
,
1999
, “
Heat Transfer and Flow on the First Stage Blade Tip of a Power Generation Gas Turbine—Part 1: Experimental Results
,”
ASME
Paper No. 99-GT-169.
7.
Kwak
,
J. S.
,
Ahn
,
J.
, and
Han
,
J.-C.
,
2004
, “
Effects of Rim Location, Rim Height, and Tip Clearance on the Tip and Near Tip Region Heat Transfer of a Gas Turbine Blade
,”
Int. J. Heat Mass Transfer
,
47
(
26
), pp.
5651
5663
.
8.
Choi
,
M.
,
Tapanlis
,
O.
,
Lewis
,
L.
,
Ciccomascolo
,
C.
, and
Gillespie
,
D.
,
2014
, “
The Effect of Impingement Jet Heat Transfer on Casing Contraction in a Turbine Case Cooling System
,”
ASME
Paper No. GT2014-26749.
9.
Dann
,
A.
,
Thorpe
,
S.
,
Lewis
,
L.
, and
Ireland
,
P.
,
2014
, “
Innovative Measurement Techniques for a Cooled Turbine Casing Operating at Engine Representative Thermal Conditions
,”
ASME
Paper No. GT2014-26092.
10.
Van Paridon
,
A.
,
Dann
,
A.
,
Ireland
,
P.
, and
Bacic
,
M.
,
2015
, “
Design and Development of a Full-Scale Generic Transient Heat Transfer Facility (THTF) for Air System Validation
,”
ASME
Paper No. GT2015-42391.
11.
Corren
,
D.
,
Atkins
,
N.
,
Turner
,
J.
,
Eastwood
,
D.
,
Davies
,
S.
, and
Dixon
,
R.
,
2010
, “
An Advanced Multi-Configuration Stator Well Cooling Test Facility
,”
ASME
Paper No. GT2010-23450.
12.
Lattime
,
S.
,
Steinetz
,
B.
, and
Robbie
,
M.
,
2005
, “
Test Rig for Evaluating Active Turbine Blade Tip Clearance Control Concepts
,”
J. Propul. Power
,
21
(
3
), pp.
552
563
.
13.
Rolls-Royce Ltd.
,
2005
,
The Jet Engine
, 5th ed.,
Rolls-Royce
,
London
.
14.
BSI
,
1990
, “
Steels for Pressure Purposes—Part 3: Specification for Corrosion-and Heat-Resisting Steels: Plates, Sheet and Strip
,” British Standards Institute, London, UK,
Standard No. BS 1501-3:1990
.
15.
Florschuetz
,
L. W.
,
Metzger
,
D. E.
, and
Truman
,
C. R.
,
1981
, “
Jet Array Impingement With Crossflow-Correlation of Streamwise Resolved Flow and Heat Transfer Distributions
,”
Technical Report
, NASA Contractor Report No. 3373.
16.
Goldstein
,
R. J.
, and
Seol
,
W. S.
,
1991
, “
Heat Transfer to a Row of Impinging Circular Air Jets Including the Effect of Entrainment
,”
Int. J. Heat Mass Transfer
,
34
(
8
), pp.
2133
2147
.
17.
BSI
,
2000
, “
Tool Steels
,” British Standards Institute, London, UK, Standard No. BS EN ISO 4957:2000.
18.
Hay
,
N.
, and
Lampard
,
D.
,
1998
, “
Discharge Coefficient of Turbine Cooling Holes: A Review
,”
ASME J. Turbomach.
,
120
(
2
), pp.
314
319
.
19.
McGreehan
,
W. F.
, and
Schotsch
,
M. J.
,
1988
, “
Flow Characteristics of Long Orifices With Rotation and Corner Radiusing
,”
ASME J. Turbomach.
,
110
(
2
), pp.
213
217
.
20.
Swamee
,
P. K.
,
Ojha
,
C. S. P.
, and
Kumar
,
S.
,
1998
, “
Discharge Equation for Rectangular Slots
,”
J. Hydraul. Eng.
,
124
(
9
), pp.
973
974
.
21.
Wu
,
D.
,
Burton
,
R.
, and
Schoenau
,
G.
,
2002
, “
An Empirical Discharge Coefficient Model for Orifice Flow
,”
Int. J. Fluid Power
,
3
(
3
), pp.
13
18
.
22.
ASM International
,
1990
,
ASM Handbook
(Properties and Selection: Irons, Steels and High Performance Alloys), 10th ed., Vol.
1
,
American Society of Metals
, Russell Township, Ohio.
23.
Buttsworth
,
D. R.
, and
Jones
,
T. V.
,
1997
, “
Radial Conduction Effects in Transient Heat Transfer Experiments
,”
Aeronaut. J.
,
101
(
1005
), pp.
209
212
.
You do not currently have access to this content.