In 1992, United States Department of Energy's (DOE) Advanced Turbine Systems (ATS) program established a target of 60% efficiency for utility scale gas turbine (GT) power plants to be achieved by the year 2000. Although the program led to numerous technology breakthroughs, it took another decade for an actual combined cycle (CC) power plant with an H class GT to reach (and surpass) the target efficiency. Today, another target benchmark, 65% efficiency, circulates frequently in trade publications and engineering journals with scant support from existing technology, its development path as well as material limits, and almost no regard to theoretical (e.g., underlying physics) and practical (e.g., cost, complexity, reliability, and constructability) concerns. This paper attempts to put such claims to test and establish the room left for gas turbine combined cycle (GTCC) growth in the next two decades. The analysis and conclusions are firmly based on fundamental thermodynamic principles with carefully and precisely laid out assumptions and supported by rigorous calculations. The goal is to arm the practicing engineer with a consistent, coherent, and self-standing reference to critically evaluate claims, predictions, and other futuristic information pertaining to GTCC technology.

References

1.
Schimmoller
,
B. K.
,
1998
, “
Technology Pushes Gas Turbines Higher
,”
Power Engineering
,
102
(
4
), pp.
16
24
.
2.
Diakunchak
, I
. S.
,
Gaul
,
G. R.
,
McQuiggan
,
G.
, and
Southall
,
L. R.
,
2004
, “
Siemens Westinghouse Advanced Turbine Systems Program Final Summary
,”
ASME J. Eng. Gas. Turbines Power
,
126
(
3
), pp.
524
530
.
3.
Gülen
,
S. C.
,
2013
, “
Modern Gas Turbine Combined Cycle
,”
Turbomach. Int.
,
54
(
6
), pp.
31
35
.
4.
Feigl
,
M.
,
Setzer
,
F.
,
Feigl-Verecca
,
R.
,
Myers
,
G.
, and
Sweet
,
B.
,
2005
, “
Field Test Validation of the DLN2.5H Combustion System on the 9H Gas Turbine in Baglan Bay Power Station
,”
ASME
Paper No. GT2005-68843.
5.
Pritchard
,
J. E.
,
2003
, “
H System™ Technology Update
,”
ASME
Paper No. GT2003-38711.
6.
Schilke
,
P. W.
,
2004
, “
Advanced Gas Turbine Materials and Coatings
,” General Electric, Schenectady, NY,
GE Energy
Report No. GER-3569Ghttp://powergen.gepower.com/content/dam/gepower-powergen/global/en_US/documents/technical/ger/ger-3569g-advanced-gas-turbine-materials-coatings.pdf.
7.
Clarke
,
D. R.
,
Öchsner
,
M.
, and
Padture
,
N. P.
,
2012
, “
Thermal-Barrier Coatings for More Efficient Gas-Turbine Engines
,”
MRS Bull.
,
37
(
10
), pp.
891
898
.
8.
Horlock
,
J. H.
, and
Denton
,
J. D.
,
2005
, “
A Review of Some Early Design Practice Using Computational Fluid Dynamics and a Current Perspective
,”
ASME J. Turbomach.
,
127
(
1
), pp.
5
13
.
9.
Chupp
,
R. E.
,
Hendricks
,
R. C.
,
Lattimer
,
S. B.
, and
Steinetz
,
B. M.
,
2006
, “
Sealing in Turbomachinery
,”
J. Propul. Power
,
22
(
2
), pp.
313
349
.
10.
Committee on Benefits of DOE R&D on Energy Efficiency and Fossil Energy, 2001
, “
Advanced Turbine Systems, Program Description and History
,”
Energy Research at DOE—Was It Worth It? Energy Efficiency and Fossil Energy Research 1978–2000
,
National Academy Press
,
Washington, DC
, pp.
185
187
.
11.
Fischer
,
W. J.
, and
Nag
,
P.
,
2011
, “
H-Class High Performance Siemens Gas Turbine SGT-8000H Series
,”
Power-Gen International
, Las Vegas, NV, Dec. 13–15.
12.
Prandi
,
R.
,
2011
, “
H Class Siemens Combined Cycle Plant Achieves 60.75% Efficiency
,”
Diesel and Gas Turbine Worldwide
,
43
(
6
), pp.
46
48
.
13.
Fischer
,
W. J.
,
Winter
,
W.
, and
Krömeke
,
J.
,
2011
, “
SCC5-8000H 1S Irsching 4 on the Way to 60% World Record
,” PowerGen Europe, Milano, Italy, June 7–9.
14.
deBiasi
,
V.
,
2014
, “
Air-Cooled 7HA and 9HA Designs Rated at Over 61% Efficiency
,”
Gas Turbine World
,
44
(
2
), pp.
10
13
.
15.
Bohn
,
D.
,
Dilthey
,
U.
, and
Schubert
,
F.
,
2004
, “
Innovative Technologien für ein GuD-Kraftwerk mit 65% Wirkungsgrad
,”
VDI-Berichte
,
1857
, pp.
13
25
.
16.
Gülen
,
S. C.
,
2014
, “
GE–Alstom Merger Brings Visions of the Überturbine
,”
Gas Turbine World
,
44
(
4
), pp.
28
35
.
17.
U.S. Energy Information Administration,
2014
, “
Annual Energy Outlook 2014 With Projections to 2040
,” U.S. Department of Energy, Washington, DC, Report No. DOE/EIA-0383(2014).
18.
Bhargava
,
R.
,
Bianchi
,
M.
,
Campanari
,
S.
,
De Pascale
,
A.
,
di Montenegro
,
G. N.
, and
Peretto
,
A.
,
2010
, “
A Parametric Thermodynamic Evaluation of High Performance Gas Turbine Based Combined Cycles
,”
ASME J. Eng. Gas Turbines Power
,
132
(
2
), p.
022001
.
19.
Bolland
,
O.
,
Kvamsdal
,
H. M.
, and
Boden
,
J. C.
,
2001
, “
A Thermodynamic Comparison of the Oxy-Fuel Power Cycles Water Cycle, Graz Cycle and Matiant Cycle
,”
International Conference Power Generation and Sustainable Development
, Liège, Belgium, Oct. 8–9.
20.
Gülen
,
S. C.
, and
Driscoll
,
A. V.
,
2012
, “
Simple Parametric Model for Quick Assessment of IGCC Performance
,”
ASME J. Eng. Gas Turbines Power
,
135
(
1
), p.
011802
.
21.
Botero
,
C.
,
Finkenrath
,
M.
,
Bartlett
,
M.
,
Chu
,
R.
,
Choi
,
G.
, and
Chinn
,
D.
,
2008
, “
Redesign, Optimization, and Economic Evaluation of a Natural Gas Combined Cycle With the Best Integrated Technology CO2 Capture
,”
Energy Procedia
,
1
(
1
), pp.
3835
3842
.
22.
Gülen
,
S. C.
,
2014
, “
Second Law Analysis of Integrated Solar Combined Cycle Power Plants
,”
ASME
Paper No. GT2014-26156.
23.
Chiesa
,
P.
,
Lozza
,
G.
, and
Mazzocchi
,
L.
,
2005
, “
Using Hydrogen as Gas Turbine Fuel
,”
ASME J. Eng. Gas Turbines Power
,
127
(
1
), pp.
73
80
.
24.
Rice
,
I.
,
1986
, “
Discussion: On Thermodynamics of Gas-Turbine Cycles: Parts 1, 2, and 3 (El-Masri, M. A., 1985, ASME J. Eng. Gas Turbines Power, 107, pp. 880–889; 1986, ASME J. Eng. Gas Turbines Power, 108, pp. 151–168)
,”
ASME J. Eng. Gas Turbines Power
,
108
(
1
), pp.
168
170
.
25.
Smith
,
R. W.
,
Johansen
,
A. D.
, and
Ranasinghe
,
J.
,
2005
, “
Fuel Moisturization for Natural Gas Fired Combined Cycles
,”
ASME
Paper No. GT2005-69012.
26.
Bakken
,
L. E.
,
Jordal
,
K.
,
Syverud
,
E.
, and
Veer
,
T.
,
2004
, “
Centenary of the First Gas Turbine to Give Net Power Output: A Tribute to Ægidius Elling
,”
ASME
Paper No. GT2004-53211.
27.
Eckardt
,
D.
,
2014
, Gas Turbine Powerhouse—The Development of the Power Generation Gas Turbine at BBC—ABB—Alstom, Oldenburg Verlag, Münich, Germany.
28.
Balling
,
L.
,
Termühlen
,
H.
, and
Baumgartner
,
R.
,
2002
, “
Forty Years of Combined Cycle Power Plants
,”
ASME
Paper No. IJPGC2002-26111.
29.
Maslak
,
C. E.
, and
Tomlinson
,
L. O.
,
1994
, “
GE Combined-Cycle Experience
,” General Electric, Schenectady, NY,
GE Industrial & Power Systems
Report No. GER-3651Dhttp://powergen.gepower.com/content/dam/gepower-powergen/global/en_US/documents/technical/ger/ger-3651d-ge-combined-cycle-experience.pdf.
30.
Stodola
,
A.
,
1927
,
Steam and Gas Turbines
(authorized translation from the 6th German ed. by
L. C.
Löwenstein
),
McGraw-Hill
,
New York
.
31.
Smith
,
R. W.
, and
Gülen
,
S. C.
,
2012
, “
Natural Gas Power
,”
Encyclopedia of Sustainability Science and Technology
,
Robert A.
Meyers
, ed., Vol.
10
,
Springer Verlag
, Berlin, pp.
6804
6852
.
32.
Della Villa
,
S. A.
, Jr.
, and
Köneke
,
C.
,
2010
, “
A Historical and Current Perspective of the Availability and Reliability Performance of Heavy Duty Gas Turbines
,”
ASME
Paper No. GT2010-23182.
33.
Gülen
,
S. C.
, and
Mazumder
,
I.
,
2013
, “
An Expanded Cost of Electricity Model for Highly Flexible Power Plants
,”
ASME J. Eng. Gas Turbines Power
,
135
(
1
), p.
011801
.
34.
U.S.
Energy Information Administration
, “
Form EIA-923 Data
,” U.S. Department of Energy, Washington, DC, http://www.eia.gov/electricity/data/eia923/
35.
Gas Turbine World,
2013
,
Gas Turbine World 2013 GTW Handbook
, Vol.
30
,
Pequot Publishing
,
Fairfield, CT
.
36.
Gas Turbine World
,
1999
,
Gas Turbine World 1998–1999 Handbook
, Vol.
19
,
Pequot Publishing
,
Fairfield, CT
.
37.
Gas Turbine World
,
1990
,
Gas Turbine World 1990 Handbook
, Vol.
11
,
Pequot Publishing
,
Fairfield, CT
.
38.
Bullinger
,
P.
,
2012
, “
Enhanced Water/Steam Cycle for Advanced Combined Cycle Technology
,” PowerGen Asia, Bangkok, Thailand, Oct. 3–5.
39.
Brückner
,
H.
,
Bergmann
,
D.
, and
Termühlen
,
H.
,
1992
, “
Various Concepts for Topping Steam Plants With Gas Turbines
,”
54th American Power Conference
, Chicago, IL, Apr. 13–15.
40.
Becker
,
B.
, and
Thien
,
V.
,
2003
, “
High-Efficiency Gas Turbines Operating in Intermediate Duty
,”
International Gas Turbine Congress
, Tokyo, Nov. 2–7, Paper No. TS-098.
41.
Kawakami
,
K.
,
Kawai
,
J.
, and
Nagai
,
M.
,
2009
, “
Design and Test Operation Performance of 1500 °C Class Gas Turbine Combined-Cycle Power Plant: Construction of Group 1 of the Tokyo Electric Power Company's Kawasaki Thermal Power Station
,”
MHI Tech. Rev.
,
46
(
2
), pp.
31
35
http://www.mhi-global.com/company/technology/review/abstracte-46-2-31.html.
42.
Avison
,
M.
,
2001
, “
An Operator's Experience: Tapada do Outerio CCPP With World-Class Availability and Performance
,”
Siemens Power J.
,
1
, pp.
18
22
.
43.
Ai
,
T.
,
Masada
,
J.
, and
Ito
,
E.
,
2014
, “
Development of the High Efficiency and Flexible Gas Turbine M701F5 by Applying ‘J’ Class Gas Turbine Technologies
,”
MHI Tech. Rev.
,
51
(
1
), pp.
1
9
http://www.mhi-global.com/company/technology/review/abstracte-51-1-1.html.
44.
Gebhardt
,
E.
,
2000
, “
The F Technology Experience Story
,” General Electric, Atlanta, GA,
GE Power Systems
Report No. GER-3950Chttp://powergen.gepower.com/content/dam/gepower-powergen/global/en_US/documents/technical/ger/ger-3950c-f-technology-experience-story.pdf.
45.
Chase
,
D.
, and
Kehoe
,
P.
,
2000
, “
GE Combined Cycle Product Line and Performance
,” General Electric, Schenectady, NY,
GE Power Systems
Report No. GER-3574Ghttp://powergen.gepower.com/content/dam/gepower-powergen/global/en_US/documents/technical/ger/ger-3574g-ge-cc-product-line-performance.pdf.
46.
Ol'khovskii
,
G. G.
,
Radin
,
Y. A.
,
Mel'nikov
, V
. A.
,
Tuz
,
N. E.
, and
Mironenko
,
A. V.
,
2013
, “
Thermal Tests of the 9FB Gas Turbine Unit Produced by General Electric
,”
Therm. Eng.
,
60
(
9
), pp.
607
612
.
47.
Patterson
,
J. R.
, and
Walsh
,
E. T.
,
1983
, “
A Manufacturer's Role in Heavy-Duty Gas Turbine Future Technology
,”
ASME
Paper No. 83-GTJ-13.
48.
Gas Turbine World, 2003
,
Gas Turbine World 2003 Handbook
, Vol.
23
,
Pequot Publishing
,
Fairfield, CT
.
49.
Gas Turbine World
,
2008
,
Gas Turbine World 2008 Handbook
, Vol.
28
,
Pequot Publishing
,
Fairfield, CT
.
50.
Gülen
,
S. C.
, and
Smith
,
R. W.
,
2010
, “
Second Law Efficiency of the Rankine Bottoming Cycle of a Combined Cycle Power Plant
,”
ASME J. Eng. Gas Turbines Power
,
132
(
1
), p.
011801
.
51.
Horlock
,
J. H.
,
1994
, “
Combined Cycle Power Plants—Past, Present, and Future
,”
ASME J. Eng. Gas Turbines Power
,
117
(
4
), pp.
608
616
.
52.
Gülen
,
S. C.
,
2011
, “
A Simple Parametric Model for Analysis of Cooled Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
133
(
1
), p.
011801
.
53.
Gas Turbine World
, 2014,
2014 Performance Specs
, 30th ed.,
Pequot Publishing
, Fairfield, CT.
54.
Ito
,
E.
,
Tsukagoshi
,
K.
,
Muyama
,
A.
,
Masada
,
J.
, and
Torigoe
,
T.
,
2010
, “
Development of Key Technology for Ultra-High-Temperature Gas Turbines
,”
MHI Tech. Rev.
,
47
(
1
), pp.
19
25
http://www.mhi-global.com/company/technology/review/abstracte-47-1-19.html.
55.
Fant
,
D. B.
,
Jackson
,
G. S.
,
Karim
,
H.
,
Newburry
,
D. M.
,
Dutta
,
P.
,
Smith
,
K. O.
, and
Dibble
,
R. W.
,
2003
, “
Status of Catalytic Combustion R&D for the Department of Energy Advanced Turbine Systems Program
,”
ASME J. Eng. Gas Turbines Power
,
122
(
2
), pp.
293
300
.
56.
Meher-Homji
,
C.
,
1997
, “
The Development of the Junkers Jumo 004B–The World's First Production Turbojet
,”
ASME J. Eng. Gas Turbines Power
,
119
(
4
), pp.
783
789
.
57.
Harada
,
H.
,
2003
, “
High Temperature Materials for Gas Turbines: The Present and Future
,”
International Gas Turbine Congress 2003
, Tokyo, Japan, Nov. 2–7, Paper No. KS-2.
58.
Cerri
,
G.
,
Giovannelli
,
A.
,
Battisti
,
L.
, and
Fedrizzi
,
R.
,
2007
, “
Advances in Effusive Cooling Techniques of Gas Turbines
,”
Appl. Therm. Eng.
,
27
(
4
), pp.
692
698
.
59.
Van Roode
,
M.
,
2010
, “
Ceramic Gas Turbine Development: Need for a 10 Year Plan
,”
ASME J. Eng. Gas Turbines Power
,
132
(
1
), p.
011301
.
60.
Probert
,
T.
,
2014
, “
Exelon Will be the First to Debut GE's New 7HA.02 Gas Turbine
,”
Gas Turbine World
,
44
(
5
), pp.
14
19
.
61.
Grondahl
,
C. M.
, and
Tsuchiya
,
T.
,
2001
, “
Performance Benefit Assessment of Ceramic Component in an MS9001FA Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
123
(
3
), pp.
513
519
.
62.
Siemens, 2009
, “
Hydraulic Clearance Optimization for Siemens Gas Turbines
,”
Siemens AG
, Energy Services Division, Erlangen, Germany, Report No. E50001-G520-A173-X-4A00.
63.
Rudolph
,
R.
,
Sunshine
,
R.
,
Woodhall
,
M.
, and
Handler
,
M.
,
2009
, “
Innovative Design Features of the SGT5-8000H Turbine and Secondary Air System
,”
ASME
Paper No. GT2009-60137.
64.
Rice
,
I.
,
1982
, “
The Reheat Gas Turbine With Steam-Blade Cooling—A Means of Increasing Reheat Pressure, Output, and Combined Cycle Efficiency
,”
ASME J. Eng. Gas Turbines Power
,
104
(
1
), pp.
9
22
.
65.
Thermoflow
,
2014
, GT PRO
Version 24.1.1
,
Thermoflow Inc.,
Southborough, MA
.
66.
Bolland
,
O.
,
1991
, “
A Comparative Evaluation of Advanced Combined Cycle Alternatives
,”
ASME J. Eng. Gas Turbines Power
,
113
(
2
), pp.
190
197
.
67.
Gülen
,
S. C.
, and
Mazumder
,
I.
,
2013
, “
An Expanded Cost of Electricity Model for Highly Flexible Power Plants
,”
ASME J. Eng. Gas Turbines Power
,
135
(
1
), p.
011801
.
68.
Gülen
,
S. C.
,
2013
, “
What Is the Worth of 1 Btu/kWh of Heat Rate?
,”
POWER
,
157
(6), pp.
60
63
.
69.
Gülen
,
S. C.
,
2013
, “
Performance Entitlement of Supercritical Steam Bottoming Cycle
,”
ASME J. Eng. Gas Turbines Power
,
135
(
12
), p.
124501
.
70.
Mayer
,
A.
, and
van der Linden
,
S.
,
1999
, “
GT24/26 Advanced Cycle System Power Plant Progress for the New Millenium
,”
ASME
Paper No. 99-GT-404.
71.
Chiesa
,
P.
, and
Macchi
,
E.
,
2004
, “
A Thermodynamic Analysis of Different Options to Break 60% Electric Efficiency in Combined Cycle Power Plants
,”
ASME J. Eng. Gas Turbines Power
,
126
(
4
), pp.
770
785
.
72.
Gülen
,
S. C.
,
2010
, “
Gas Turbine With Constant Volume Heat Addition
,”
ASME
Paper No. ESDA2010-24817.
73.
Gülen
,
S. C.
,
2013
, “
Constant Volume Combustion: The Ultimate Gas Turbine Cycle
,”
Gas Turbine World
,
43
(
6
), pp.
20
27
.
74.
Wilson
,
D. G.
, and
Korakianitis
,
T.
,
1998
,
The Design of High-Efficiency Turbomachinery and Gas Turbines
, 2nd ed.,
Prentice Hall
, Upper Saddle River, NJ.
75.
Thiel
,
P.
, and
Masters
,
B.
,
2014
,
Zero to One: Notes on Startups, or How to Build the Future
,
Crown Business
,
New York
.
76.
Gülen
,
S. C.
,
2011
, “
Importance of Auxiliary Power Consumption on Combined Cycle Performance
,”
ASME J. Eng. Gas Turbines Power
,
133
(
4
), p.
041801
.
77.
Thermoflex
,
2014
,
Thermoflex Version 24.1.1
,
Thermoflow Inc.
,
Southborough, MA
.
78.
Bejan
,
A.
,
1996
, “
Models of Power Plants That Generate Minimum Entropy While Operating at Maximum Power
,”
Am. J. Phys.
,
64
(
8
), pp.
1054
1059
.
You do not currently have access to this content.