This paper reports new measurements and analysis made in the Research Cell 19 supersonic wind-tunnel facility housed at the Air Force Research Laboratory. The measurements include planar chemiluminescence from multiple angular positions obtained using fiber-based endoscopes (FBEs) and the accompanying velocity fields obtained using particle image velocimetry (PIV). The measurements capture the flame dynamics from different angles (e.g., the top and both sides) simultaneously. The analysis of such data by proper orthogonal decomposition (POD) will also be reported. Nonintrusive and full-field imaging measurements provide a wealth of information for model validation and design optimization of propulsion systems. However, it is challenging to obtain such measurements due to various implementation difficulties such as optical access, thermal management, and equipment cost. This work therefore explores the application of the FBEs for nonintrusive imaging measurements in the supersonic propulsion systems. The FBEs used in this work are demonstrated to overcome many of the practical difficulties and significantly facilitate the measurements. The FBEs are bendable and have relatively small footprints (compared to high-speed cameras), which facilitates line-of-sight optical access. Also, the FBEs can tolerate higher temperatures than high-speed cameras, ameliorating the thermal management issues. Finally, the FBEs, after customization, can enable the capture of multiple images (e.g., images of the flow fields at multi-angles) onto the same camera chip, greatly reducing the equipment cost of the measurements. The multi-angle data sets, enabled by the FBEs as discussed above, were analyzed by POD to extract the dominating flame modes when examined from various angular positions. Similar analysis was performed on the accompanying PIV data to examine the corresponding modes of the flow fields. The POD analysis provides a quantitative measure of the dominating spatial modes of the flame and flow structures, and is an effective mathematical tool to extract key physics from large data sets as the high-speed measurements collected in this study. However, the past POD analysis has been limited to data obtained from one orientation only. The availability of data at multiple angles in this study is expected to provide further insights into the flame and flow structures in high-speed propulsion systems.

References

1.
Ben-Yakar
,
A.
, and
Hanson
,
R. K.
,
2001
, “
Cavity Flame-Holders for Ignition and Flame Stabilization in Scramjets: An Overview
,”
J. Propul. Power
,
17
(
4
), pp.
869
877
.
2.
Gruber
,
M. R.
,
Donbar
,
J. M.
,
Carter
,
C. D.
, and
Hsu
,
K.-Y.
,
2004
, “
Mixing and Combustion Studies Using Cavity-Based Flameholders in a Supersonic Flow
,”
J. Propul. Power
,
20
(
5
), pp.
769
778
.
3.
Gruber
,
M. R.
,
Baurle
,
R. A.
,
Mathur
,
T.
, and
Hsu
,
K. Y.
,
2001
, “
Fundamental Studies of Cavity-Based Flameholder Concepts for Supersonic Combustors
,”
J. Propul. Power
,
17
(
1
), pp.
146
153
.
4.
Hammack
,
S. D.
,
Lee
,
T.
,
Hsu
,
K.-Y.
, and
Carter
,
C. D.
,
2013
, “
High-Repetition-Rate OH Planar Laser-Induced Fluorescence of a Cavity Flameholder
,”
J. Propul. Power
,
29
(
5
), pp.
1248
1251
.
5.
Rasmussen
,
C. C.
,
Dhanuka
,
S. K.
, and
Driscoll
,
J. F.
,
2007
, “
Visualization of Flameholding Mechanisms in a Supersonic Combustor Using PLIF
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
2505
2512
.
6.
Rasmussen
,
C. C.
,
Driscoll
,
J. F.
,
Hsu
,
K. Y.
,
Donbar
,
J. M.
,
Gruber
,
M. R.
, and
Carter
,
C. D.
,
2005
, “
Stability Limits of Cavity-Stabilized Flames in Supersonic Flow
,”
Proc. Combust. Inst.
,
30
(
2
), pp.
2825
2833
.
7.
Choi
,
J.-Y.
,
Ma
,
F.
, and
Yang
,
V.
,
2005
, “
Combustion Oscillations in a Scramjet Engine Combustor With Transverse Fuel Injection
,”
Proc. Combust. Inst.
,
30
(
2
), pp.
2851
2858
.
8.
Ma
,
F.
,
Li
,
J.
,
Yang
,
V.
,
Lin
,
K.-C.
, and
Jackson
,
T. A.
,
2005
, “
Thermoacoustic Flow Instability in a Scramjet Combustor
,”
AIAA
Paper No. 2005-3824.
9.
Lin
,
K.-C.
,
Jackson
,
K.
,
Behdadnia
,
R.
,
Jackson
,
T. A.
,
Ma
,
F.
, and
Yang
,
V.
,
2010
, “
Acoustic Characterization of an Ethylene-Fueled Scramjet Combustor With a Cavity Flameholder
,”
J. Propul. Power
,
26
(
6
), pp.
1161
1169
.
10.
Rasmussen
,
C. C.
,
Driscoll
,
J. F.
,
Carter
,
C. D.
, and
Hsu
,
K. Y.
,
2005
, “
Characteristics of Cavity-Stabilized Flames in a Supersonic Flow
,”
J. Propul. Power
,
21
(
4
), pp.
765
768
.
11.
Allen
,
W. H.
, Jr.
,
2005
, “
Fuel-Air Injection Effects on Combustion in Cavity-Based Flameholders in a Supersonic Flow
,” M.S. thesis, Air Force Institute of Technology, Wright-Patterson AFB, OH, p.
104
.
12.
Hsu
,
K.-Y.
,
Carter
,
C.
,
Gruber
,
M.
,
Barhorst
,
T.
, and
Smith
,
S.
,
2010
, “
Experimental Study of Cavity-Strut Combustion in Supersonic Flow
,”
J. Propul. Power
,
26
(
6
), pp.
1237
1246
.
13.
Tuttle
,
S. G.
,
Carter
,
C. D.
, and
Hsu
,
K.-Y.
,
2014
, “
Particle Image Velocimetry in a Nonreacting and Reacting High-Speed Cavity
,”
J. Propul. Power
,
30
(
3
), pp.
576
591
.
14.
Kim
,
K. M.
,
Baek
,
S. W.
, and
Han
,
C. Y.
,
2004
, “
Numerical Study on Supersonic Combustion With Cavity-Based Fuel Injection
,”
Int. J. Heat Mass Transfer
,
47
(
2
), pp.
271
286
.
15.
Peterson
,
D. M.
,
Hagenmaier
,
M.
,
Carter
,
C. D.
, and
Tuttle
,
S. G.
,
2013
, “
Hybrid Reynolds-Averaged and Large-Eddy Simulations of a Supersonic Cavity Flameholder
,”
AIAA
Paper No. 2013-2483.
16.
Ballester
,
J.
, and
García-Armingol
,
T.
,
2010
, “
Diagnostic Techniques for the Monitoring and Control of Practical Flames
,”
Prog. Energy Combust. Sci.
,
36
(
4
), pp.
375
411
.
17.
Bheemul
,
H.
,
Lu
,
G.
, and
Yan
,
Y.
,
2002
, “
Three-Dimensional Visualization and Quantitative Characterization of Gaseous Flames
,”
Meas. Sci. Technol.
,
13
(
10
), p.
1643
.
18.
Ma
,
L.
,
Sanders
,
S.
,
Jeffries
,
J.
, and
Hanson
,
R.
,
2002
, “
Monitoring and Control of a Pulse Detonation Engine Using a Diode-Laser Fuel Concentration and Temperature Sensor
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
161
166
.
19.
Ma
,
L.
,
Cai
,
W. W.
,
Li
,
X.
,
Sanders
,
S. T.
,
Caswell
,
A. W.
,
Sukesh
,
R.
,
Plemmons
,
D. H.
, and
Gord
,
J. R.
,
2012
, “
50 KHz Rate 2D Imaging of Temperature and H2O Concentration at Exhaust Plane of J85 Engine by Hyperspectral Tomography
,”
Opt. Express
,
21
(
1
), pp.
1152
1162
.
20.
Li
,
X.
, and
Ma
,
L.
,
2014
, “
Volumetric Imaging of Turbulent Reactive Flows at KHz Based on Computed Tomography
,”
Opt. Express
,
22
(
4
), pp.
4768
4778
.
21.
Cai
,
W.
,
Li
,
X.
,
Li
,
F.
, and
Ma
,
L.
,
2013
, “
Numerical and Experimental Validation of a Three-Dimensional Combustion Diagnostic Based on Tomographic Chemiluminescence
,”
Opt. Express
,
21
(
6
), pp.
7050
7064
.
22.
Kang
,
M.
,
Wu
,
Y.
, and
Ma
,
L.
,
2014
, “
Fiber-Based Endoscopes for 3D Combustion Measurements: View Registration and Spatial Resolution
,”
Combust. Flame
,
161
(
12
), pp.
3063
3072
.
23.
Hossain
,
M. M.
,
Lu
,
G.
, and
Yan
,
Y.
,
2011
, “
Three-Dimensional Reconstruction of Combustion Flames Through Optical Fiber Sensing and CCD Imaging
,”
IEEE Instrumentation and Measurement Technology Conference
(
I2MTC
), Binjiang, China, May 10–12.
24.
Dils
,
R.
,
1983
, “
High‐Temperature Optical Fiber Thermometer
,”
J. Appl. Phys.
,
54
(
3
), pp.
1198
1201
.
25.
Bouguet
,
J.-Y.
,
2004
, “
Camera Calibration Toolbox for Matlab
,” http://www.vision.caltech.edu/bouguetj/calib_doc/
26.
Gruber
,
M.
, and
Nejad
,
A.
,
1995
, “
New Supersonic Combustion Research Facility
,”
J. Propul. Power
,
11
(
5
), pp.
1080
1083
.
27.
Kang
,
M.
,
Li
,
X.
, and
Ma
,
L.
,
2014
, “
Three-Dimensional Flame Measurements Using Fiber-Based Endoscopes
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3821
3828
.
28.
Kang
,
M.
,
Wu
,
Y.
, and
Ma
,
L.
,
2014
, “
Fiber-Based Endoscopes for 3D Combustion Measurements: View Registration and Spatial Resolution
,”
Combust. Flame
,
16
(
12
), pp.
3063
3072
.
29.
Wickersham
,
A. J.
,
Li
,
X.
, and
Ma
,
L.
,
2014
, “
Advanced Methods for Extracting Flow and Combustion Physics From High Speed Laser Diagnostics
,”
AIAA
Paper No. 2014-1353.
30.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
25
(
1
), pp.
539
575
.
31.
Steinberg
,
A. M.
,
Boxx
,
I.
,
Stoehr
,
M.
,
Carter
,
C. D.
, and
Meier
,
W.
,
2010
, “
Flow-Flame Interactions Causing Acoustically Coupled Heat Release Fluctuations in a Thermo-Acoustically Unstable Gas Turbine Model Combustor
,”
Combust. Flame
,
157
(
12
), pp.
2250
2266
.
32.
Stohr
,
M.
,
Boxx
,
I.
,
Carter
,
C. D.
, and
Meier
,
W.
,
2012
, “
Experimental Study of Vortex-Flame Interaction in a Gas Turbine Model Combustor
,”
Combust. Flame
,
159
(
8
), pp.
2636
2649
.
33.
Iudiciani
,
P.
,
Duwig
,
C.
,
Hosseini
,
S. M.
,
Szasz
,
R.
,
Fuchs
,
L.
,
Gutmark
,
E.
,
Lantz
,
A.
,
Collin
,
R.
, and
Aldén
,
M.
,
2010
, “
Proper Orthogonal Decomposition for Experimental Investigation of Swirling Flame Instabilities
,”
AIAA
Paper No. 2010-584.
34.
Caux-Brisebois
,
V.
,
Steinberg
,
A. M.
,
Arndt
,
C. M.
, and
Meier
,
W.
,
2014
, “
Thermo-Acoustic Velocity Coupling in a Swirl-Stabilized Gas Turbine Model Combustor
,”
Combust. Flame
,
161
(
12
), pp.
3166
3180
.
35.
Hilberg
,
D.
,
Lazik
,
W.
, and
Fiedler
,
H.
,
1993
, “
The Application of Classical Pod and Snapshot Pod in a Turbulent Shear Layer With Periodic Structures
,”
Eddy Structure Identification in Free Turbulent Shear Flows
,
Springer
, Dordrecht, pp.
251
259
.
36.
Barber
,
T.
,
Ahmed
,
H.
, and
Shafi
,
N. A.
,
2005
, “
Pod Snapshot Data Reduction for Periodic Fluid Flows
,”
AIAA
Paper No. 2005-287.
37.
Feeny
,
B.
, and
Kappagantu
,
R.
,
1998
, “
On the Physical Interpretation of Proper Orthogonal Modes in Vibrations
,”
J. Sound Vib.
,
211
(
4
), pp.
607
616
.
38.
Kostka
,
S.
,
Lynch
,
A. C.
,
Huelskamp
,
B. C.
,
Kiel
,
B. V.
,
Gord
,
J. R.
, and
Roy
,
S.
,
2012
, “
Characterization of Flame-Shedding Behavior Behind a Bluff-Body Using Proper Orthogonal Decomposition
,”
Combust. Flame
,
159
(
9
), pp.
2872
2882
.
39.
Wickersham
,
A. J.
,
Li
,
X.
, and
Ma
,
L.
,
2014
, “
Comparison of Fourier, Principal Component and Wavelet Analyses for High Speed Flame Measurements
,”
Comput. Phys. Commun.
,
185
(
4
), pp.
1237
1245
.
40.
Blanchard
,
R.
,
Wickersham
,
A. J.
,
Ma
,
L.
,
Ng
,
W.
, and
Vandsburger
,
U.
,
2014
, “
Simulating Bluff-Body Flameholders: On the Use of Proper Orthogonal Decomposition for Combustion Dynamics Validation
,”
ASME J. Eng. Gas Turbines Power
,
136
(
12
), p.
121504
.
41.
Sundaram
,
S. S.
, and
Babu
,
V.
,
2013
, “
Numerical Investigation of Combustion Instability in a V-Gutter Stabilized Combustor
,”
ASME J. Eng. Gas Turbines Power
,
135
(
12
), p.
121501
.
42.
Sirovich
,
L.
,
1989
, “
Chaotic Dynamics of Coherent Structures
,”
Phys. D
,
37
(
1
), pp.
126
145
.
43.
Cordier
,
L.
, and
Tissot
,
G.
,
2014
, “
Model Reduction, POD and Data Assimilation
,”
Advanced Post-Processing of Experimental and Numerical Data
,
von Karman Institute
, Rhode-St-Genese, Belgium.
44.
Culick
,
F.
,
1987
, “
A Note on Rayleigh's Criterion
,”
Combust. Sci. Technol.
,
56
(
4–6
), pp.
159
166
.
45.
Lin
,
K.-C.
,
Tam
,
C.-J.
,
Boxx
,
I.
,
Carter
,
C.
,
Jackson
,
K.
, and
Lindsey
,
M.
,
2007
, “
Flame Characteristics and Fuel Entrainment Inside a Cavity Flame Holder in a Scramjet Combustor
,”
AIAA
Paper No. 2007-5381.
You do not currently have access to this content.