The objective of the present work is to establish a framework to design simple Arrhenius mechanisms for simulation of diesel engine combustion. The goal is to predict auto-ignition over a selected range of temperature and equivalence ratio, at a significantly reduced computational cost, and to quantify the accuracy of the optimized mechanisms for a selected set of characteristics. The methodology is demonstrated for n-dodecane oxidation by fitting the auto-ignition delay time predicted by a detailed reference mechanism to a two-step model mechanism. The pre-exponential factor and activation energy of the first reaction are modeled as functions of equivalence ratio and temperature and calibrated using Bayesian inference. This provides both the optimal parameter values and the related uncertainties over a defined envelope of temperatures, pressures, and equivalence ratios. Nonintrusive spectral projection (NISP) is then used to propagate the uncertainty through homogeneous auto-ignitions. A benefit of the method is that parametric uncertainties can be propagated in the same way through coupled reacting flow calculations using techniques such as large eddy simulation (LES) to quantify the impact of the chemical parameter uncertainty on simulation results.

References

1.
Johnson
,
T. V.
,
2009
, “
Diesel Emission Control in Review
,” SAE Paper No. 2009-01-0121.
2.
Nigam
,
P. S.
, and
Singh
,
A.
,
2011
, “
Production of Liquid Biofuels From Renewable Resources
,”
Prog. Energy Combust. Sci.
,
37
(
1
), pp.
52
68
.
3.
Sarathy
,
S. M.
,
Westbrook
,
C. K.
,
Mehl
,
M.
,
Pitz
,
W. J.
,
Togbe
,
C.
,
Dagaut
,
P.
,
Wang
,
H.
,
Oehlschlaeger
,
M. A.
,
Niemann
,
U.
,
Seshadri
,
K.
,
Veloo
,
P. S.
,
Ji
,
C.
,
Egolfopoulos
,
F. N.
, and
Lu
,
T.
,
2011
, “
Comprehensive Chemical Kinetic Modeling of the Oxidation of 2-Methylalkanes From C7 to C20
,”
Combust. Flame
,
158
(
12
), pp.
2338
2357
.
4.
Narayanaswamy
,
K.
,
Pepiot
,
P.
, and
Pitsch
,
H.
,
2014
, “
A Chemical Mechanism for Low to High Temperature Oxidation of n-Dodecane as a Component of Transportation Fuel Surrogates
,”
Combust. Flame
,
161
(
4
), pp.
866
884
.
5.
Luo
,
Z.
,
Som
,
S.
,
Sarathy
,
S. M.
,
Plomer
,
M.
,
Pitz
,
W. J.
,
Longman
,
D. E.
, and
Lu
,
T.
,
2014
, “
Development and Validation of an n-Dodecane Skeletal Mechanism for Diesel Spray-Combustion Applications
,”
Combust. Theory Modell.
,
18
(
2
), pp.
187
203
.
6.
Vasu
,
S. S.
,
Davidson
,
D. F.
,
Hong
,
Z.
,
Vasudevan
,
V.
, and
Hanson
,
R. K.
,
2009
, “
n-Dodecane Oxidation at High-Pressures: Measurements of Ignition Delay Times and OH Concentration Time-Histories
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
173
180
.
7.
Reaction Design
,
2013
, “
CHEMKIN-PRO 15131
,” Reaction Design, San Diego, CA.
8.
da Cruz
,
A. P.
,
2004
, “
Three-Dimensional Modeling of Self-Ignition in HCCI and Conventional Diesel Engines
,”
Combust. Sci. Technol.
,
176
(
5–6
), pp.
867
887
.
9.
Colin
,
O.
,
da Cruz
,
A. P.
, and
Jay
,
S.
,
2005
, “
Detailed Chemistry-Based Auto-Ignition Model Including Low Temperature Phenomena Applied to 3-D Engine Calculations
,”
Proc. Combust. Inst.
,
30
(
2
), pp.
2649
2656
.
10.
Robert
,
A.
,
Richard
,
S.
,
Colin
,
O.
,
Martinez
,
L.
, and
De Francqueville
,
L.
,
2015
, “
LES Prediction and Analysis of Knocking Combustion in a Spark Ignition Engine
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
2941
2948
.
11.
Pierce
,
C. D.
, and
Moin
,
P.
,
2004
, “
Progress-Variable Approach for Large-Eddy Simulation of Non-Premixed Turbulent Combustion
,”
J. Fluid Mech.
,
504
, pp.
73
97
.
12.
Boivin
,
P.
,
Jiménez
,
C.
,
Sánchez
,
A. L.
, and
Williams
,
F. A.
,
2011
, “
An Explicit Reduced Mechanism for H2–Air Combustion
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
517
523
.
13.
Misdariis
,
A.
,
Vermorel
,
O.
, and
Poinsot
,
T.
,
2015
, “
A Methodology Based on Reduced Schemes to Compute Autoignition and Propagation in Internal Combustion Engines
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3001
3008
.
14.
Sánchez
,
A. L.
,
Lépinette
,
A.
,
Bollig
,
M.
,
Liñán
,
A.
, and
Lázaro
,
B.
,
2000
, “
The Reduced Kinetic Description of Lean Premixed Combustion
,”
Combust. Flame
,
123
(
4
), pp.
436
464
.
15.
Fernández-Tarrazo
,
E.
,
Sánchez
,
A. L.
,
Liñán
,
A.
, and
Williams
,
F. A.
,
2006
, “
A Simple One-Step Chemistry Model for Partially Premixed Hydrocarbon Combustion
,”
Combust. Flame
,
147
(
1–2
), pp.
32
38
.
16.
Franzelli
,
B.
,
Riber
,
E.
,
Sanjosé
,
M.
, and
Poinsot
,
T.
,
2010
, “
A Two-Step Chemical Scheme for Kerosene–Air Premixed Flames
,”
Combust. Flame
,
157
(
7
), pp.
1364
1373
.
17.
Boivin
,
P.
,
Dauptain
,
A.
,
Jiménez
,
C.
, and
Cuenot
,
B.
,
2012
, “
Simulation of a Supersonic Hydrogen–Air Autoignition-Stabilized Flame Using Reduced Chemistry
,”
Combust. Flame
,
159
(
4
), pp.
1779
1790
.
18.
Franzelli
,
B.
,
Riber
,
E.
,
Gicquel
,
L. Y.
, and
Poinsot
,
T.
,
2012
, “
Large Eddy Simulation of Combustion Instabilities in a Lean Partially Premixed Swirled Flame
,”
Combust. Flame
,
159
(
2
), pp.
621
637
.
19.
Roux
,
A.
,
Gicquel
,
L.
,
Sommerer
,
Y.
, and
Poinsot
,
T.
,
2008
, “
Large Eddy Simulation of Mean and Oscillating Flow in a Side-Dump Ramjet Combustor
,”
Combust. Flame
,
152
(
1
), pp.
154
176
.
20.
Berglund
,
M.
,
Fedina
,
E.
,
Fureby
,
C.
,
Tegner
,
J.
, and
Sabel'Nikov
,
V.
,
2010
, “
Finite Rate Chemistry Large-Eddy Simulation of Self-Ignition in Supersonic Combustion Ramjet
,”
AIAA J.
,
48
(
3
), pp.
540
550
.
21.
Enaux
,
B.
,
Granet
,
V.
,
Vermorel
,
O.
,
Lacour
,
C.
,
Pera
,
C.
,
Angelberger
,
C.
, and
Poinsot
,
T.
,
2011
, “
LES Study of Cycle-to-Cycle Variations in a Spark Ignition Engine
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
3115
3122
.
22.
Boileau
,
M.
,
Staffelbach
,
G.
,
Cuenot
,
B.
,
Poinsot
,
T.
, and
Bérat
,
C.
,
2008
, “
LES of an Ignition Sequence in a Gas Turbine Engine
,”
Combust. Flame
,
154
(
1
), pp.
2
22
.
23.
Wolf
,
P.
,
Staffelbach
,
G.
,
Gicquel
,
L. Y.
,
Müller
,
J.-D.
, and
Poinsot
,
T.
,
2012
, “
Acoustic and Large Eddy Simulation Studies of Azimuthal Modes in Annular Combustion Chambers
,”
Combust. Flame
,
159
(
11
), pp.
3398
3413
.
24.
Pickett
,
L. M.
,
2005–2014
, “
Engine Combustion Network
,” Sandia National Laboratories, Combustion Research Facility, Livermore, CA, www.sandia.gov/ECN.
25.
Pickett
,
L. M.
,
Genzale
,
C. L.
,
Manin
,
J.
,
Malbec
,
L.
, and
Hermant
,
L.
,
2011
, “
Measurement Uncertainty of Liquid Penetration in Evaporating Diesel Sprays
,” 23rd Annual Conference on Liquid Atomization and Spray Systems (
ILASS
), Ventura, CA, May 15-18, Paper No. ILASS2011-111.
26.
Najm
,
H. N.
,
Debusschere
,
B. J.
,
Marzouk
,
Y. M.
,
Widmer
,
S.
, and
Le Maître
,
O.
,
2009
, “
Uncertainty Quantification in Chemical Systems
,”
Int. J. Numer. Methods Eng.
,
80
(
6–7
), pp.
789
814
.
27.
Skeen
,
S. A.
,
Manin
,
J.
, and
Pickett
,
L. M.
,
2015
, “
Simultaneous Formaldehyde PLIF and High-Speed Schlieren Imaging for Ignition Visualization in High-Pressure Spray Flames
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3167
3174
.
28.
Le Maître
,
O. P.
, and
Knio
,
O. M.
,
2010
,
Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics
,
Springer Science and Business Media
, Dordrecht, The Netherlands.
29.
Westbrook
,
C. K.
, and
Dryer
,
F. L.
,
1981
, “
Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames
,”
Combust. Sci. Technol.
,
27
(1–2), pp.
31
43
.
30.
Dryer
,
F. L.
, and
Glassman
,
I.
,
1973
, “
High-Temperature Oxidation of CO and CH4
,”
Combustion Institute
, Vol.
14
(
1
), pp.
987
1003
.
31.
Lacaze
,
G.
,
Misdariis
,
A.
,
Ruiz
,
A.
, and
Oefelein
,
J. C.
,
2015
, “
Analysis of High-Pressure Diesel Fuel Injection Processes Using LES With Real-Fluid Thermodynamics and Transport
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
1603
1611
.
32.
Haario
,
H.
,
Saksman
,
E.
, and
Tamminen
,
J.
,
2001
, “
An Adaptive Metropolis Algorithm
,”
Bernoulli
,
7
(
2
), pp.
223
242
.
33.
Atchadé
,
Y. F.
, and
Rosenthal
,
J. S.
,
2005
, “
On Adaptive Markov Chain Monte Carlo Algorithms
,”
Bernoulli
,
11
(
5
), pp.
815
828
.
34.
Wiener
,
N.
,
1938
, “
The Homogeneous Chaos
,”
Am. J. Math.
,
60
(
4
), pp.
897
936
.
35.
Sargsyan
,
K.
,
Debusschere
,
B.
,
Najm
,
H.
, and
Maître
,
O. L.
,
2010
, “
Spectral Representation and Reduced Order Modeling of the Dynamics of Stochastic Reaction Networks Via Adaptive Data Partitioning
,”
SIAM J. Sci. Comput.
,
31
(
6
), pp.
4395
4421
.
36.
Sargsyan
,
K.
,
Safta
,
C.
,
Debusschere
,
B.
, and
Najm
,
H.
,
2012
, “
Uncertainty Quantification Given Discontinuous Model Response and a Limited Number of Model Runs
,”
SIAM J. Sci. Comput.
,
34
(
1
), pp.
B44
B64
.
37.
Rosenblatt
,
M.
,
1952
, “
Remarks on a Multivariate Transformation
,”
Ann. Math. Stat.
,
23
(
3
), pp.
470
472
.
You do not currently have access to this content.