In this work, the laminar combustion characteristics of H2/N2/air (H2/CO2/air) were systematically investigated under different hydrogen ratios (40–100%) and equivalence ratios (0.4–1.0) in a closed combustion vessel using the spherical expanding flame method associated with Schlieren technology. The unstretched laminar burning velocities were compared with data from previous study, and the result indicates that excellent agreements are obtained. Numerical simulations were also conducted using GRI3.0 and USC II mechanisms to compare with the present experimental results. The Markstein length for H2/inert gas can be decreased by decreasing the equivalence ratio and hydrogen ratio. The results indicate that the H2/inert gas premixed flames tend to be more unstable with the decrease of equivalence ratio and hydrogen ratio. For H2/N2 mixture, the suppression effect on laminar burning velocity is caused by modified specific heat of mixtures and decreased heat release, which result in a decreased flame temperature. For H2/CO2 mixture, the carbon dioxide has stronger dilution effect than nitrogen in reducing laminar burning velocity owing to both thermal effect and chemical effect.

References

1.
Plass
,
H. J.
, Jr.
,
Barbir
,
F.
,
Miller
,
H. P.
, and
Veziroglu
,
T. N.
,
1990
, “
Economics of Hydrogen as a Fuel for Surface Transportation
,”
Int. J. Hydrogen Energy
,
15
(
9
), pp.
663
668
.
2.
Sun
,
B. G.
,
Tian
,
H. Y.
, and
Liu
,
F. S.
,
2014
, “
The Distinctive Characteristics of Combustion Duration in Hydrogen Internal Combustion Engine
,”
Int. J. Hydrogen Energy
,
39
(
26
), pp.
14472
14478
.
3.
Zhang
,
B.
,
Ji
,
C. W.
, and
Wang
,
S. F.
,
2015
, “
Combustion Analysis and Emissions Characteristics of a Hydrogen-Blended Methanol Engine at Various Spark Timings
,”
Int. J. Hydrogen Energy
,
40
(
13
), pp.
4707
4716
.
4.
Yang
,
Z. Z.
,
Wang
,
L.
,
He
,
M.
, and
Cao
,
Y. D.
,
2012
, “
Research on Optimal Control to Resolve the Contradictions Between Restricting Abnormal Combustion and Improving Power Output in Hydrogen Fueled Engines
,”
Int. J. Hydrogen Energy
,
37
(
1
), pp.
774
782
.
5.
Sun
,
Z. Y.
,
Liu
,
F. S.
,
Bao
,
X. C.
, and
Liu
,
X. H.
,
2012
, “
Research on Cellular Instabilities in Outwardly Propagating Hydrogen–Air Flames
,”
Int. J. Hydrogen Energy
,
37
(
9
), pp.
7889
7899
.
6.
Krejci
,
M. C.
,
Mathieu
,
O.
,
Vissotski
,
A. J.
,
Ravi
,
S.
,
Sikes
,
T. G.
, and
Petersen
,
E. L.
,
2013
, “
Laminar Flame Speed and Ignition Delay Time Data for the Kinetic Modeling of Hydrogen and Syngas Fuel Blends
,”
ASME J. Eng. Gas Turbines Power
,
135
(
2
), p.
021503
.
7.
Subramanian
,
V.
,
Mallikarjuna
,
J. M.
, and
Ramesh
,
A.
,
2007
, “
Intake Charge Dilution Effects on Control of Nitric Oxide Emission in a Hydrogen Fueled SI Engine
,”
Int. J. Hydrogen Energy
,
32
(
12
), pp.
2043
2056
.
8.
Holborn
,
P. G.
,
Battersby
,
P.
,
Ingram
,
J. M.
,
Averill
,
A. F.
, and
Nolan
,
P. F.
,
2013
, “
Estimating the Effect of Water Fog and Nitrogen Dilution Upon the Burning Velocity of Hydrogen Deflagrations From Experimental Test Data
,”
Int. J. Hydrogen Energy
,
38
(
16
), pp.
6882
6895
.
9.
Ibrahim
,
M. M.
, and
Ramesh
,
A.
,
2014
, “
Investigations on the Effects of Intake Temperature and Charge Dilution in Hydrogen Fueled HCCI Engine
,”
Int. J. Hydrogen Energy
,
39
(
26
), pp.
14097
14108
.
10.
Donohoe
,
N.
,
Heufer
,
K. A.
,
Aul
,
C. J.
,
Petersen
,
E. L.
,
Bourque
,
G.
,
Gordon
,
R.
, and
Curran
,
H. J.
,
2015
, “
Influence of Steam Dilution on the Ignition of Hydrogen, Syngas and Natural Gas Blends at Elevated Pressures
,”
Combust. Flame
,
162
(
4
), pp.
1126
1135
.
11.
Kwon
,
S.
,
Tseng
,
L.
, and
Faeth
,
G.
,
1992
, “
Laminar Burning Velocities and Transition to Unstable Flames in H2/O2/N2 and C3H8/O2/N2 Mixtures
,”
Combust. Flame
,
90
(
3–4
), pp.
230
246
.
12.
Aung
,
K. T.
,
Hassan
,
M. I.
, and
Faeth
,
G. M.
,
1998
, “
Effects of Pressure and Nitrogen Dilution on Flame/Stretch Interactions of Laminar Premixed H2/O2/N2 Flames
,”
Combust. Flame
,
112
(
1–2
), pp.
1
15
.
13.
Sohn
,
C. H.
,
2002
, “
Unsteady Analysis of Acoustic Pressure Response in N2 Diluted H2 and Air Diffusion Flames
,”
Combust. Flame
,
128
(
1–2
), pp.
110
120
.
14.
Liu
,
F.
,
Guo
,
H.
, and
Smallwood
,
G.
,
2003
, “
The Chemical Effect of CO2 Replacement of N2 in Air on the Burning Velocity of CH4 and H2 Premixed Flames
,”
Combust. Flame
,
133
(
4
), pp.
495
497
.
15.
Park
,
J.
,
Kim
,
S. C.
,
Keel
,
S. I.
,
Noh
,
D. S.
,
Oh
,
C. B.
, and
Chung
,
D.
,
2004
, “
Effect of Steam Addition on Flame Structure and NO Formation in H2–O2–N2 Diffusion Flame
,”
Int. J. Energy Res.
,
28
(
12
), pp.
1075
1088
.
16.
deFerrieres
,
S.
,
el Bakali
,
A.
,
Lefort
,
B.
,
Montero
,
M.
, and
Pauwels
,
J. F.
,
2008
, “
Experimental and Numerical Investigation of Low-Pressure Laminar Premixed Synthetic Natural Gas/O2/N2 and Natural Gas/H2/O2/N2 Flames
,”
Combust. Flame
,
154
(
3
), pp.
601
623
.
17.
Korobeinichev
,
O. P.
,
Shmakov
,
A. G.
,
Rybitskaya
,
I. V.
,
Bol'shova
,
T. A.
,
Chernov
,
A. A.
,
Knyaz'kov
,
D. A.
, and
Konnov
,
A. A.
,
2009
, “
Kinetics and Mechanism of Chemical Reactions in the H2/O2/N2 Flame at Atmospheric Pressure
,”
Kinet. Catal.
,
50
(
2
), pp.
156
161
.
18.
Tang
,
C. L.
,
Huang
,
Z. H.
,
Jin
,
C.
,
He
,
J. J.
,
Wang
,
J. H.
,
Wang
,
X. B.
, and
Miao
,
H. Y.
,
2009
, “
Explosion Characteristics of Hydrogen–Nitrogen–Air Mixtures at Elevated Pressures and Temperatures
,”
Int. J. Hydrogen Energy
,
34
(
1
), pp.
554
561
.
19.
Ghermay
,
Y.
,
Mantzaras
,
J.
,
Bombach
,
R.
, and
Boulouchos
,
K.
,
2011
, “
Homogeneous Combustion of Fuel-Lean H2/O2/N2 Mixtures Over Platinum at Elevated Pressures and Preheats
,”
Combust. Flame
,
158
(
8
), pp.
1491
1506
.
20.
Yu
,
J. F.
,
Yu
,
R.
, and
Bai
,
X. S.
,
2013
, “
Onset of Cellular Instability in Adiabatic H2/O2/N2 Premixed Flames Anchored to a Flat-Flame Heat-Flux Burner
,”
Int. J. Hydrogen Energy
,
38
(
34
), pp.
14866
14878
.
21.
Pans
,
M. A.
,
Abad
,
A.
,
de Diego
,
L. F.
,
García-Labiano
,
F.
,
Gayán
,
P.
, and
Adánez
,
J.
,
2013
, “
Optimization of H2 Production With CO2 Capture by Steam Reforming of Methane Integrated With a Chemical-Looping Combustion System
,”
Int. J. Hydrogen Energy
,
38
(
27
), pp.
11878
11892
.
22.
Zhuang
,
G. L.
,
Tseng
,
H. H.
, and
Wey
,
M. Y.
,
2014
, “
Preparation of PPO–Silica Mixed Matrix Membranes by In-Situ Sol–Gel Method for H2/CO2 Separation
,”
Int. J. Hydrogen Energy
,
39
(
30
), pp.
17178
17190
.
23.
Natarajan
,
J.
,
Lieuwen
,
T.
, and
Seitzman
,
J.
,
2007
, “
Laminar Flame Speeds of H2/CO Mixtures: Effect of CO2 Dilution, Preheat Temperature, and Pressure
,”
Combust. Flame
,
151
(
1–2
), pp.
104
119
.
24.
Shy
,
S. S.
,
Chen
,
Y. C.
,
Yang
,
C. H.
,
Liu
,
C. C.
, and
Huang
,
C. M.
,
2008
, “
Effects of H2 or CO2 Addition, Equivalence Ratio, and Turbulent Straining on Turbulent Burning Velocities for Lean Premixed Methane Combustion
,”
Combust. Flame
,
153
(
4
), pp.
510
524
.
25.
Fandino
,
O.
,
Martin Trusler
,
J. P.
, and
Vega-Maza
,
D.
,
2015
, “
Phase Behavior of (CO2+H2) and (CO2+N2) at Temperatures Between (218.15 and 303.15) K at Pressures Up to 15 MPa
,”
Int. J. Greenhouse Gas Control
,
36
, pp.
78
92
.
26.
Nakahara
,
M.
,
Abe
,
F.
,
Tokunaga
,
K.
, and
Ishihara
,
A.
,
2015
, “
Effect of Dilution Gas on Burning Velocity of Hydrogen-Premixed Meso-Scale Spherical Laminar Flames
,”
Proc. Combust. Inst.
,
35
(
1
), pp.
639
646
.
27.
Cheng
,
Y.
,
Tang
,
C. L.
, and
Huang
,
Z. H.
,
2015
, “
Kinetic Analysis of H2 Addition Effect on the Laminar Flame Parameters of the C1–C4 n-Alkane–Air Mixtures: From One Step Overall Assumption to Detailed Reaction Mechanism
,”
Int. J. Hydrogen Energy
,
40
(
1
), pp.
703
718
.
28.
Li
,
H. M.
,
Li
,
G. X.
,
Sun
,
Z. Y.
,
Zhai
,
Y.
, and
Zhou
,
Z. H.
,
2014
, “
Measurement of the Laminar Burning Velocities and Markstein Lengths of Lean and Stoichiometric Syngas Premixed Flames Under Various Hydrogen Fractions
,”
Int. J. Hydrogen Energy
,
39
(
30
), pp.
17371
17380
.
29.
Miao
,
H. Y.
,
Jiao
,
Q.
,
Huang
,
Z. H.
, and
Jiang
,
D. M.
,
2009
, “
Measurement of Laminar Burning Velocities and Markstein Lengths of Diluted Hydrogen-Enriched Natural Gas
,”
Int. J. Hydrogen Energy
,
34
(
1
), pp.
507
518
.
30.
Miao
,
J.
,
Leung
,
C. W.
,
Huang
,
Z. H.
,
Cheung
,
C. S.
,
Yu
,
H. B.
, and
Xie
,
Y. L.
,
2014
, “
Laminar Burning Velocities, Markstein Lengths, and Flame Thickness of Liquefied Petroleum Gas With Hydrogen Enrichment
,”
Int. J. Hydrogen Energy
,
39
(
24
), pp.
13020
13030
.
31.
Li
,
H.
,
Li
,
G.
,
Sun
,
Z.
,
Yu
,
Y.
,
Zhai
,
Y.
, and
Zhou
,
Z.
,
2014
, “
Experimental Investigation on Laminar Burning Velocities and Flame Intrinsic Instabilities of Lean and Stoichiometric H2/CO/Air Mixtures at Reduced, Normal and Elevated Pressures
,”
Fuel
,
135
, pp.
279
291
.
32.
Bradley
,
D.
,
Hicks
,
R. A.
,
Lawes
,
M.
,
Sheppard
,
C. G. W.
, and
Woolley
,
R.
,
1998
, “
The Measurement of Laminar Burning Velocities and Markstein Numbers for Iso-Octane–Air and Iso-Octane–n-Heptane–Air Mixtures at Elevated Temperatures and Pressures in an Explosion Bomb
,”
Combust. Flame
,
115
(
1–2
), pp.
126
144
.
33.
Huang
,
Z.
,
Zhang
,
Y.
,
Zeng
,
K.
,
Liu
,
B.
,
Wang
,
Q.
, and
Jiang
,
D.
,
2006
, “
Measurements of Laminar Burning Velocities for Natural Gas–Hydrogen–Air Mixtures
,”
Combust. Flame
,
146
(
1–2
), pp.
302
311
.
34.
Karim
,
G. A.
,
2011
, “
The Combustion of Bio-Gases and Low Heating Value Gaseous Fuel Mixtures
,”
Int. J. Green Energy
,
8
(
3
), pp.
372
382
.
35.
Ha
,
J. S.
,
Moon
,
C. W.
,
Park
,
J.
,
Kim
,
J. S.
,
Kim
,
T. H.
,
Park
,
J. H.
,
Yun
,
J. H.
, and
Keel
,
S. I.
,
2010
, “
A Study on Flame Interaction Between Methane/Air and Nitrogen-Diluted Hydrogen–Air Premixed Flames
,”
Int. J. Hydrogen Energy
,
35
(
13
), pp.
6992
7001
.
36.
Kim
,
J. S.
,
Park
,
J.
,
Bae
,
D. S.
,
Vu
,
T. M.
,
Ha
,
J. S.
, and
Kim
,
T. K.
,
2010
, “
A Study on Methane–Air Premixed Flames Interacting With Syngas–Air Premixed Flames
,”
Int. J. Hydrogen Energy
,
35
(
3
), pp.
1390
1400
.
37.
Cheng
,
T. S.
,
Chang
,
Y. C.
,
Chao
,
Y. C.
, et al.,
2011
, “
An Experimental and Numerical Study on Characteristics of Laminar Premixed H2/CO/CH4
,”
Int. J. Hydrogen Energy
,
36
(
20
), pp.
13207
13217
.
38.
Pareja
,
J.
,
Burbano
,
H. J.
, and
Ogami
,
Y.
,
2010
, “
Measurements of the Laminar Burning Velocity of Hydrogen–Air Premixed Flames
,”
Int. J. Hydrogen Energy
,
35
(
4
), pp.
1812
1818
.
39.
Bouvet
,
N.
,
Chauveau
,
C.
,
Gokalp
,
I.
,
Lee
,
S. Y.
, and
Santoro
,
R. J.
,
2011
, “
Characterization of Syngas Laminar Flames Using the Bunsen Burner Configuration
,”
Int. J. Hydrogen Energy
,
36
(
1
), pp.
992
1005
.
40.
Yepes
,
H. A.
, and
Amell
,
A. A.
,
2013
, “
Laminar Burning Velocity With Oxygen-Enriched Air of Syngas Produced From Biomass Gasification
,”
Int. J. Hydrogen Energy
,
38
(
18
), pp.
7519
7527
.
41.
Law
,
C. K.
,
Jomaas
,
G.
, and
Bechtold
,
J. K.
,
2005
, “
Cellular Instabilities of Expanding Hydrogen/Propane Spherical Flames at Elevated Pressures: Theory and Experiment
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
159
167
.
42.
Bradley
,
D.
,
Lawes
,
M.
, and
Mansour
,
M. S.
,
2009
, “
Explosion Bomb Measurements of Ethanol–Air Laminar Gaseous Flame Characteristics at Pressures Up To 1.4 MPa
,”
Combust. Flame
,
156
(
7
), pp.
1462
1470
.
43.
Kuznetsov
,
M.
,
Kobelt
,
S.
,
Grune
,
J.
, and
Jordan
,
T.
,
2012
, “
Flammability Limits and Laminar Flame Speed of Hydrogen–Air Mixtures at Sub-Atmospheric Pressures
,”
Int. J. Hydrogen Energy
,
37
(
22
), pp.
17580
17588
.
44.
Pugh
,
D. G.
,
O'Doherty
,
T.
,
Griffiths
,
A. J.
,
Bowen
,
P. J.
,
Crayford
,
A. P.
, and
Marsh
,
R.
,
2013
, “
Sensitivity to Change in Laminar Burning Velocity and Markstein Length Resulting From Variable Hydrogen Fraction in Blast Furnace Gas for Changing Ambient Conditions
,”
Int. J. Hydrogen Energy
,
38
(
8
), pp.
3459
3470
.
45.
Wang
,
J.
,
Huang
,
Z.
,
Kobayashi
,
H.
, and
Ogami
,
Y.
,
2012
, “
Laminar Burning Velocities and Flame Characteristics of CO–H2–CO2–O2 Mixtures
,”
Int. J. Hydrogen Energy
,
37
(
24
), pp.
19158
19167
.
46.
Bradley
,
D.
,
Cresswell
,
T. M.
, and
Puttock
,
J. S.
,
2001
, “
Flame Acceleration Due to Flame-Induced Instabilities in Large-Scale Explosions
,”
Combust. Flame
,
124
(
4
), pp.
551
559
.
47.
Kelley
,
A. P.
, and
Law
,
C. K.
,
2009
, “
Nonlinear Effects in the Extraction of Laminar Flame Speeds From Expanding Spherical Flames
,”
Combust. Flame
,
156
(
9
), pp.
1844
1851
.
48.
Chen
,
Z.
,
2015
, “
On the Accuracy of Laminar Flame Speeds Measured From Outwardly Propagation Spherical Flames: Methane/Air at Normal Temperature and Pressure
,”
Combust. Flame
,
162
(
6
), pp.
2442
2453
.
49.
Galmiche
,
B.
,
Halter
,
F.
, and
Foucher
,
F.
,
2012
, “
Effects of High Pressure, High Temperature and Dilution on Laminar Burning Velocities and Markstein Lengths of Iso-Octane/Air Mixtures
,”
Combust. Flame
,
159
(
11
), pp.
3286
3299
.
50.
Kee
,
R. J.
,
Grcar
,
J. F.
,
Smooke
,
M. D.
, and
Miller
,
J. A.
,
1985
, “
PREMIX: A FORTRAN Program for Modeling Steady Laminar One-Dimensional Premixed Flames
,”
Sandia National Laboratories
,
Albuquerque, NM
, Report No. SAND 85-8240.
51.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
, and
Goldenberg
,
M.
, “
GRI3.0 Mesh
,”
Gas Research Institute
,
Chicago, IL
, http://www.me.berkeley.edu/gri_mech/
52.
Wang
,
H.
,
You
,
X. Q.
,
Joshi
,
A. V.
,
Davis
,
S. G.
,
Laskin
,
A.
,
Egolfopoulos
,
F. N.
, and
Law
,
C. K.
,
2007
, “
USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1–C4 Compounds
,”
Combustion Kinetics Laboratory, University of Southern California
,
Los Angeles, CA
, http://ignis.usc.edu/USC_Mech_II.htm
53.
Dowdy
,
D. R.
,
Smith
,
D. B.
,
Taylor
,
S. C.
, and Williams, A.,
1991
, “
The Use of Expanding Spherical Flames to Determine Burning Velocities and Stretch Effects in Hydrogen/Air Mixtures
,”
Proc. Combust. Inst.
,
23
(
1
), pp.
325
332
.
54.
Egolfopoulos
,
F. N.
, and
Law
,
C. K.
,
1991
, “
An Experimental and Computational Study of the Burning Rates of Ultra-Lean to Moderately-Rich H2/O2/N2 Laminar Flames With Pressure Variations
,”
Proc. Combust. Inst.
,
23
(
1
), pp.
333
340
.
55.
Aung
,
K. T.
,
Hassan
,
M. I.
, and
Faeth
,
G. M.
,
1997
, “
Flame Stretch Interactions of Laminar Premixed Hydrogen/Air Flames at Normal Temperature and Pressure
,”
Combust. Flame
,
109
(
1–2
), pp.
1
24
.
56.
Tse
,
S. D.
,
Zhu
,
D. L.
, and
Law
,
C. K.
,
2000
, “
Morphology and Burning Rates of Expanding Spherical Flames in H2/O2/Inert Mixtures Up to 60 Atmospheres
,”
Proc. Combust. Inst.
,
28
(
2
), pp.
1793
1800
.
57.
Kwon
,
O. C.
, and
Faeth
,
G. M.
,
2001
, “
Flame/Stretch Interactions of Premixed Hydrogen-Fueled Flames: Measurements and Predictions
,”
Combust. Flame
,
124
(
4
), pp.
590
610
.
58.
Lamoureux
,
N.
,
Djebaili-Chaumeix
,
N.
, and
Paillard
,
C. E.
,
2003
, “
Laminar Flame Velocity Determination for H2–Air–He–CO2 Mixtures Using the Spherical Bomb Method
,”
Exp. Therm. Fluid Sci.
,
27
(
4
), pp.
385
393
.
59.
Verhelst
,
S.
,
Woolley
,
R.
,
Lawes
,
M.
, and
Sierens
,
R.
,
2005
, “
Laminar and Unstable Burning Velocities and Markstein Lengths of Hydrogen–Air Mixtures at Engine-Like Conditions
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
209
216
.
60.
Dahoe
,
A. E.
,
2005
, “
Laminar Burning Velocities of Hydrogen–Air Mixtures From Closed Vessel Gas Explosions
,”
J. Loss Prev. Process Ind.
,
18
(
3
), pp.
152
166
.
61.
Burke
,
M. P.
,
Chen
,
Z.
,
Ju
,
Y.
, and
Dryer
,
F. L.
,
2009
, “
Effect of Cylindrical Confinement on the Determination of Laminar Flame Speeds Using Outwardly Propagating Flames
,”
Combust. Flame
,
156
(
4
), pp.
771
779
.
62.
Han
,
M.
,
Ai
,
Y.
,
Chen
,
Z.
, and
Kong
,
W.
,
2015
, “
Laminar Flame Speeds of H2/CO Dilution at Normal and Elevated Pressures and Temperatures
,”
Fuel
,
148
, pp.
32
38
.
63.
Prathap
,
C.
,
Ray
,
A.
, and
Ravi
,
M. R.
,
2008
, “
Investigation of Nitrogen Dilution Effects on the Laminar Burning Velocity and Flame Stability of Syngas Fuel at Atmospheric Condition
,”
Combust. Flame
,
155
(
1–2
), pp.
145
160
.
64.
Vancoillie
,
J.
,
Christensen
,
M.
,
Nilsson
,
E. J. K.
,
Verhelst
,
S.
, and
Konnov
,
A. A.
,
2013
, “
The Effect of Dilution With Nitrogen and Steam on the Laminar Burning Velocity of Methanol at Room and Elevated Temperatures
,”
Fuel
,
105
, pp.
732
738
.
You do not currently have access to this content.