Unexpected combustions dispersion due to variations in fuel quality, production tolerance, and aging of components results in the deterioration of engine performance and increases harmful emissions. Many researchers have studied real-time combustion monitoring and control to maintain performance even under undesirable or abnormal conditions. They have reported that the reduction of combustion dispersion is promising for the decrease of emissions dispersion. In this study, we control the maximum heat release (HR) to compensate for combustion dispersion and compared the relationship between before and after control. The maximum rate of heat release (ROHRmax) is an important parameter and is highly related to engine performance and emission level. The control experiments were carried out using a diesel engine at 1500 rpm and brake mean effective pressure (BMEP) of 400 kPa, while the engine parameters were varied. The varied parameters were fuel rail pressure, swirl valve, pilot injection timing, and duration. The experimental results showed that control of the ROHRmax has the potential for the reduction of the dispersions of particulate matter (PM) emission and combustion noise even in unexpected combustion environments.

References

1.
Schilling
,
A.
,
2008
, “
Model-Based Detection and Isolation of Faults in the Air and Fuel Paths of Common-Rail DI Diesel Engines Equipped With a Lambda and a Nitrogen Oxides Sensor
,” Ph.D. dissertation, ETH, Zurich, Switzerland.
2.
Yu
,
S.
,
Song
,
H.
, and
Min
,
K.
,
2011
, “
Development of Engine Control Using the In-Cylinder Pressure Signal in a High Speed Direct Injection Diesel Engine
,”
SAE
Technical Paper No. 2011-01-141810.4271/2011-01-1418.
3.
Yu
,
S.
,
Han
,
K.
,
Nam
,
K.
,
Choi
,
D.
, and
Yu
,
J.
,
2013
, “
Development of Real-Time Engine Control Using the In-Cylinder Pressure Signal in a Diesel Engine for Passenger Vehicle
,”
SAE
Technical Paper No. 2013-01-251310.4271/2013-01-2513.
4.
Lim
,
J.
,
Oh
,
S.
,
Chung
,
J.
, and
Sunwoo
,
M.
,
2012
, “
Real-Time Combustion Phase Detection Using Central Normalized Difference Pressure in CRDI Diesel Engines
,”
ASME J. Eng. Gas Turbines Power
,
134
(
8
), p.
082801
.10.1115/1.4006582
5.
Sellnau
,
M. C.
,
Matekunas
,
F. A.
,
Battiston
,
P. A.
,
Chang
,
C.-F.
, and
Lancaster
,
D. R.
,
2000
, “
Cylinder-Pressure-Based Engine Control Using Pressure-Ratio-Management and Low-Cost Non-Intrusive Cylinder Pressure
,”
SAE
Technical Paper No. 2000-01-093210.4271/2000-01-0932.
6.
Lee
,
K.
,
Yoon
,
M.
,
Son
,
M.
, and
Sunwoo
,
M.
,
2006
, “
Closed-Loop Control of Start of Combustion Using Difference Pressure Management
,”
Proc. Inst. Mech. Eng., Part D
,
220
(11), pp.
1615
1628
.10.1243/09544070JAUTO189
7.
Lee
,
K.
,
2005
, “
Closed-Loop Control of SOC for Common-Rail Direct Injection Diesel Engines
,” Ph.D. thesis, Department of Automotive Engineering, Hanyang University, Seoul, South Korea.
8.
Yoon
,
M.
,
Lee
,
K.
, and
Sunwoo
,
M.
,
2007
, “
A Method for Combustion Phasing Control Using Cylinder Pressure Measurement in a CRDI Diesel Engine
,”
Mechatronics
,
17
(
9
), pp.
469
479
.10.1016/j.mechatronics.2007.06.001
9.
Hadler
,
J.
,
Rudolph
,
F.
,
Dorenkamp
,
R.
,
Stehr
,
H.
,
Dusterdiek
,
T.
,
Gilzendeger
,
J.
,
Mannigel
,
D.
,
Kranzusch
,
S.
,
Veldten
,
B.
,
Kosters
,
M.
, and
Specht
,
A.
,
2008
, “
Volkswagen's New 2.0L TDI Engine Fulfils the Most Stringent Emission Standards
,” 29th Vienna Motor Symposium, Vienna, April 24–25.
10.
Gangopadhyay
,
A.
,
Matekunas
,
F.
,
Battiston
,
P.
,
Szymkowicz
,
P.
,
Pinson
,
J.
, and
Landsmann
,
G.
,
2006
, “
Control of Diesel HCCI Modes Using Cylinder Pressure-Based Controls
,” 31st FISITA World Automotive Congress (FISITA2006), Yokohama, Japan, Oct. 22–27, Paper No. F2006P285.
11.
Lamping
,
M.
,
Körfer
,
T.
,
Schnorbus
,
T.
,
Pischinger
,
S.
, and
Chen
,
Y.
,
2008
, “
Tomorrows Diesel Fuel Diversity: Challenges and Solutions
,”
SAE
Technical Paper No. 2008-01-173110.4271/2008-01-1731.
12.
Pipitone
,
E.
,
2008
, “
A Comparison Between Combustion Phase Indicators for Optimal Spark Timing
,”
ASME J. Eng. Gas Turbines Power
,
130
(
5
), p.
052808
.10.1115/1.2939012
13.
Katrašnik
,
T.
,
Trenc
,
F.
, and
Oprešnik
,
S. R.
,
2006
, “
A New Criterion to Determine the Start of Combustion in Diesel Engines
,”
ASME J. Eng. Gas Turbines Power
,
128
(
4
), pp.
928
933
.10.1115/1.2179471
14.
Leonhardt
,
S.
,
Muller
,
N.
, and
Isermann
,
R.
,
1999
, “
Methods for Engine Supervision and Control Based on Cylinder Pressure Information
,”
IEEE/ASME Trans. Mechatronics
,
4
(
3
), pp.
235
245
.10.1109/3516.789682
15.
Schilling
,
A.
,
Amstutz
,
A.
,
Onder
,
C. H.
, and
Guzzella
,
L.
,
2006
, “
Real-Time Model for the Prediction of the NOx Emissions in DI Diesel Engines
,”
IEEE Computer Aided Control System Design, IEEE International Conference on Control Applications, IEEE International Symposium on Intelligent Control
(
CACSD-CCA-ISIC
), Oct. 4–6, pp.
2042
2047
10.1109/CACSD-CCA-ISIC.2006.4776954.
16.
Guardiola
,
C.
,
Lopez
,
J.
,
Martin
,
J.
, and
Garcia-Sarmiento
,
D.
,
2011
, “
Semiempirical In-Cylinder Pressure Based Model for NOx Prediction Oriented to Control Applications
,”
Appl. Therm. Eng.
,
31
(
16
), pp.
3275
3286
10.1016/j.applthermaleng.2011.05.048.
17.
Tschanz
,
F.
,
Amstutz
,
A.
,
Onder
,
C. H.
, and
Guzzella
,
L.
,
2013
, “
Feedback Control of Particulate Matter and Nitrogen Oxide Emissions in Diesel Engines
,”
Control Eng. Pract.
,
21
(
12
), pp.
1809
1820
.10.1016/j.conengprac.2012.09.014
18.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.