The rated rotational speed of the magnetically suspended motor (MSM) is always above the bending critical speed to achieve high energy density. The rotor will have a dramatic resonance when it passes the critical speed. Then, the magnetic bearing has to provide large bearing force to suppress the synchronous vibration. However, the bearing force is always limited by magnetic saturation and power amplifier voltage saturation. This paper proposed an optimum damping control method which can make effective use of the limited bearing force to minimize the synchronous vibration amplitude of the rotor nearby the critical speed. The accurate rotor model is obtained by theoretical analysis and system identification. The unbalance force response of the bending mode of the rotor is analyzed. The small gain theorem is used to determine the range of the magnitude of the control system. Then, the relationship of the optimum damping varying with the magnitude and phase of the control system nearby the critical speed is analyzed. The run-up experiments are carried out in 315 kW MSM and the results show the effectiveness and superiority of the optimum damping control method.

References

1.
Schweitzer
,
G.
, and
Maslen
,
E. H.
,
2009
,
Magnetic Bearings: Theory, Design, and Application to Rotating Machinery
,
Springer-Verlag
,
Berlin
.
2.
Ren
,
Y.
,
Su
,
D.
, and
Fang
,
J.
,
2013
, “
Whirling Modes Stability Criterion for a Magnetically Suspended Flywheel Rotor With Significant Gyroscopic Effects and Bending Modes
,”
IEEE Trans. Power Electron.
,
28
(
12
), pp.
5890
5901
.10.1109/TPEL.2013.2253126
3.
Fang
,
J.
,
Zhou
,
X.
, and
Liu
,
G.
,
2013
, “
Precise Accelerated Torque Control for Small Inductance Brushless DC Motor
,”
IEEE Trans. Power Electron.
,
28
(
3
), pp.
1400
1412
.10.1109/TPEL.2012.2210251
4.
Zheng
,
S.
, and
Han
,
B.
,
2013
, “
Investigations of an Integrated Angular Velocity Measurement and Attitude Control System for Spacecraft Using Magnetically Suspended Double-Gimbal CMGs
,”
Adv. Space Res.
,
51
(
12
), pp.
2216
2228
.10.1016/j.asr.2013.01.015
5.
Zheng
,
S.
,
Han
,
B.
, and
Guo
,
L.
,
2014
, “
Composite Hierarchical Antidisturbance Control for Magnetic Bearing System Subject to Multiple External Disturbances
,”
IEEE Trans. Ind. Electron.
,
61
(
12
), pp.
7004
7012
.10.1109/TIE.2014.2316226
6.
Abrahamsson
,
J.
,
Hedlund
,
M.
,
Kamf
,
T.
, and
Bernhoff
,
H.
,
2014
, “
High-Speed Kinetic Energy Buffer: Optimization of Composite Shell and Magnetic Bearings
,”
IEEE Trans. Ind. Electron.
,
61
(
6
), pp.
3012
3021
.10.1109/TIE.2013.2259782
7.
Fan
,
Y.
,
Jiang
,
Y.
,
Chen
,
R.-J.
,
Lee
,
Y.-T.
, and
Wu
,
T.-W.
,
2008
, “
Adaptive Variable Structure Controller Design of Turbomolecular Pump With Active Magnetic Bearings
,”
3rd IEEE Conference on Industrial Electronics and Applications
(
ICIEA 2008
),
Singapore
, June 3–5, pp.
1060
1065
.10.1109/ICIEA.2008.4582679
8.
Yang
,
S.-M.
,
2011
, “
Electromagnetic Actuator Implementation and Control for Resonance Vibration Reduction in Miniature Magnetically Levitated Rotating Machines
,”
IEEE Trans. Ind. Electron.
,
58
(
2
), pp.
611
617
.10.1109/TIE.2010.2046000
9.
Tan
,
S.-G.
, and
Wang
,
X.-X.
,
1993
, “
A Theoretical Introduction to Low Speed Balancing of Flexible Rotors: Unification and Development of the Modal Balancing and Influence Coefficient Techniques
,”
J. Sound Vib.
,
168
(
3
), pp.
385
394
.10.1006/jsvi.1993.1381
10.
EI-Shafei
,
A.
,
EI-Kabbany
,
A. S.
, and
Younan
,
A. A.
,
2004
, “
Rotor Balancing Without Trial Weights
,”
ASME J. Eng. Gas Turbines Power
,
126
(3), pp.
604
609
.10.1115/1.1762903
11.
Liu
,
S.
,
2007
, “
Modified Low-Speed Balancing Method for Flexible Rotors Based on Holospectrum
,”
Mech. Syst. Signal Process.
,
21
(
1
), pp.
348
364
.10.1016/j.ymssp.2005.09.009
12.
Liu
,
S.
, and
Qu
,
L.
,
2008
, “
A New Field Balancing Method of Rotor Systems Based on Holospectrum and Genetic Algorithm
,”
Appl. Soft Comput.
,
8
(
1
), pp.
446
455
.10.1016/j.asoc.2006.11.012
13.
Seve
,
F.
,
Andrianoely
,
M. A.
,
Berlioz
,
A.
,
Dufour
,
R.
, and
Charreyron
,
M.
,
2003
, “
Balancing of Machinery With a Flexible Variable-Speed Rotor
,”
J. Sound Vib.
,
264
(
2
), pp.
287
302
.10.1016/S0022-460X(02)01173-2
14.
Kozanecka
,
D.
,
Kozanecki
,
Z.
, and
Łagodziński
,
J.
,
2011
, “
Active Magnetic Damper in a Power Transmission System
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
5
), pp.
2273
2278
.10.1016/j.cnsns.2010.04.044
15.
Looser
,
A.
, and
Kolar
,
J. W.
,
2014
, “
An Active Magnetic Damper Concept for Stabilization of Gas Bearings in High-Speed Permanent-Magnet Machines
,”
IEEE Trans. Ind. Electron.
,
61
(
6
), pp.
3089
3098
.10.1109/TIE.2013.2284152
16.
Kasarda
,
M. E. F.
,
Mendoza
,
H.
,
Kirk
,
R. G.
, and
Wicks
,
A.
,
2004
, “
Reduction of Subsynchronous Vibrations in a Single-Disk Rotor Using an Active Magnetic Damper
,”
Mech. Res. Commun.
,
31
(
6
), pp.
689
695
.10.1016/j.mechrescom.2004.04.004
17.
Sung
,
T.
,
Han
,
Y.
, and
Lee
,
J.
,
2003
, “
Effect of a Passive Magnetic Damper in a Flywheel System With a Hybrid Superconductor Bearing Set
,”
IEEE Trans. Appl. Supercond.
,
13
(
2
), pp.
2165
2168
.10.1109/TASC.2003.813025
18.
Ito
,
M.
,
Fujiwara
,
H.
, and
Matsushita
,
O.
,
2010
, “
Q-Value Evaluation and Rotational Test of Flexible Rotor Supported by AMBs
,”
J. Syst. Des. Dyn.
,
4
(
5
), pp.
725
737
.10.1299/jsdd.4.725
19.
Lei
,
S.
, and
Palazzolo
,
A.
,
2008
, “
Control of Flexible Rotor Systems With Active Magnetic Bearings
,”
J. Sound Vib.
,
314
(
1–2
), pp.
19
38
.10.1016/j.jsv.2007.12.028
20.
Shi
,
L.
,
Yu
,
S.
,
Yang
,
G.
,
Shi
,
Z.
, and
Xu
,
Y.
,
2012
, “
Technical Design and Principle Test of Active Magnetic Bearings for the Turbine Compressor of HTR-10GT
,”
Nucl. Eng. Des.
,
251
, pp.
38
46
.10.1016/j.nucengdes.2011.11.037
21.
Okada
,
Y.
,
Shimizu
,
K.
, and
Ueno
,
S.
,
2001
, “
Vibration Control of Flexible Rotor by Inclination Control Magnetic Bearings With Axial Self-Bearing Motor
,”
IEEE/ASME Trans. Mechatronics
,
6
(
14
), pp.
521
524
.10.1109/3516.974866
22.
Sahinkaya
,
M. N.
,
Abulrub
,
A. H. G.
, and
Burrows
,
C. R.
,
2011
, “
An Adaptive Multi-Objective Controller for Flexible Rotor and Magnetic Bearing Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
133
(
3
), pp.
81
89
.10.1115/1.4003421
23.
Mushi
,
S. E.
,
Lin
,
Z.
, and
Allaire
,
P. E.
,
2012
, “
Design, Construction, and Modeling of a Flexible Rotor Active Magnetic Bearing Test Rig
,”
IEEE Trans. Mechatronics
,
17
(
6
), pp.
1170
1182
.10.1109/TMECH.2011.2160456
24.
Jang
,
M. J.
,
Chen
,
C. L.
, and
Tsao
,
Y. M.
,
2005
, “
Sliding Mode Control for Active Magnetic Bearing System With Flexible Rotor
,”
J. Franklin Inst.
,
342
(4), pp.
401
419
.10.1016/j.jfranklin.2005.01.006
25.
Darbandi
,
S. M.
,
Behzad
,
M.
,
Salarieh
,
H.
, and
Mehdigholi
,
H.
,
2014
, “
Linear Output Feedback Control of a Three-Pole Magnetic Bearing
,”
IEEE Trans. Mechatronics
,
19
(
4
), pp.
1323
1330
.10.1109/TMECH.2013.2280594
26.
Schuhmann
,
T.
,
Hofmann
,
W.
, and
Werner
,
R.
,
2012
, “
Improving Operational Performance of Active Magnetic Bearings Using Kalman Filter and State Feedback Control
,”
IEEE Trans. Ind. Electron.
,
59
(
2
), pp.
821
829
.10.1109/TIE.2011.2161056
You do not currently have access to this content.