Since the mass of the rotor in high energy density magnetically suspended motor (HEDMSM) is always large and there are only three balancing planes on the flexible rotor restricted by the structure of the motor, which means that the second bending mode cannot be balanced using N + 1 planes method which is always applied to balance the flexible rotor. Then, the rotor displacements maybe large and this situation will make the system consume large amplifier currents when the rotor passes the first bending critical speed. Therefore, the mode separation method is proposed to separate the first and the second bending modes in rotor displacement and reconstruct the displacement signal nearby the first bending mode. Then, the original rotor displacement signal used by the digital controller is substituted by the reconstructed displacement signal and the amplifier current is reduced a lot when the rotor passes the first bending critical speed. Finally, the experiment of mode separation is carried out in 100 kW magnetically suspended motor and the experiment results show the effectiveness and superiority of the mode separation method in reducing the amplifier current when the rotor passes the first bending critical speed.

References

1.
Schweitzer
,
G.
, and
Maslen
,
E. H.
,
2009
,
Magnetic Bearings: Theory, Design, and Application to Rotating Machinery
,
Springer-Verlag
,
Berlin
.
2.
Park
,
Y.
,
2014
, “
Design and Implementation of an Electromagnetic Levitation System for Active Magnetic Bearing Wheels
,”
IET Control Theory Appl.
,
8
(
2
), pp.
139
148
.10.1049/iet-cta.2013.0450
3.
Ren
,
Y.
,
Su
,
D.
, and
Fang
,
J.
,
2013
, “
Whirling Modes Stability Criterion for a Magnetically Suspended Flywheel Rotor With Significant Gyroscopic Effects and Bending Modes
,”
IEEE Trans. Power Electron.
,
28
(
12
), pp.
5890
5901
.10.1109/TPEL.2013.2253126
4.
Fang
,
J.
,
Zhou
,
X.
, and
Liu
,
G.
,
2013
, “
Precise Accelerated Torque Control for Small Inductance Brushless DC Motor
,”
IEEE Trans. Power Electron.
,
28
(
3
), pp.
1400
1412
.10.1109/TPEL.2012.2210251
5.
Zheng
,
S.
, and
Han
,
B.
,
2013
, “
Investigations of an Integrated Angular Velocity Measurement and Attitude Control System for Spacecraft Using Magnetically Suspended Double-Gimbal CMGs
,”
Adv. Space Res.
,
51
(
12
), pp.
2216
2228
.10.1016/j.asr.2013.01.015
6.
Zheng
,
Han
,
B.
, and
Guo
,
L.
,
2014
, “
Composite Hierarchical Antidisturbance Control for Magnetic Bearing System Subject to Multiple External Disturbances
,”
IEEE Trans. Ind. Electron.
,
61
(
12
), pp.
7004
7012
.10.1109/TIE.2014.2316226
7.
Abrahamsson
,
J.
,
Hedlund
,
M.
,
Kamf
,
T.
, and
Bernhoff
,
H.
,
2014
, “
High-Speed Kinetic Energy Buffer: Optimization of Composite Shell and Magnetic Bearings
,”
IEEE Trans. Ind. Electron.
,
61
(
6
), pp.
3012
3021
.10.1109/TIE.2013.2259782
8.
Fan
,
Y.
,
Jiang
,
Y.
,
Chen
,
R.-J.
,
Lee
,
Y.-T.
, and
Wu
,
T.-W.
,
2008
, “
Adaptive Variable Structure Controller Design of Turbomolecular Pump With Active Magnetic Bearings
,”
3rd IEEE Conference on Industrial Electronics and Applications
(
ICIEA 2008
), Singapore, June 3–5, pp.
1060
1065
.10.1109/ICIEA.2008.4582679
9.
Wang
,
D.
,
Wang
,
F.
, and
Bai
,
H.
,
2009
, “
Design and Performance of QFT-H Infinity Controller for Magnetic Bearing of High-Speed Motors
,”
4th IEEE Conference on Industrial Electronics and Applications
(
ICIEA 2009
), Xi'an, China, May 25–27, pp.
2624
2629
.10.1109/ICIEA.2009.5138683
10.
Yang
,
S.-M.
,
2011
, “
Electromagnetic Actuator Implementation and Control for Resonance Vibration Reduction in Miniature Magnetically Levitated Rotating Machines
,”
IEEE Trans. Ind. Electron.
,
58
(
2
), pp.
611
617
.10.1109/TIE.2010.2046000
11.
Arredondo
,
I.
,
Jugo
,
J.
, and
Etxebarria
,
V.
,
2008
, “
Modeling and Control of a Flexible Rotor System With AMB-Based Sustentation
,”
ISA Trans.
,
47
(
1
), pp.
101
112
.10.1016/j.isatra.2007.04.004
12.
Park
,
S. H.
, and
Lee
,
C. W.
,
2010
, “
Design and Control of Hybrid-Type Three-Pole Active Magnetic Bearings Using Redundant Coordinates
,”
J. Vib. Control
,
16
(
4
), pp.
601
614
.10.1177/1077546309106152
13.
Wai
,
R. J.
,
Lee
,
J. D.
, and
Chuang
,
K. L.
,
2011
, “
Real-Time PID Control Strategy for Maglev Transportation System Via Particle Swarm Optimization
,”
IEEE Trans. Ind. Electron.
,
58
(
2
), pp.
629
646
.10.1109/TIE.2010.2046004
14.
Ren
,
Y.
, and
Fang
,
J.
,
2014
, “
High-Precision and Strong-Robustness Control for an MSCMG Based on Modal Separation and Rotation Motion Decoupling Strategy
,”
IEEE Trans. Ind. Electron.
,
61
(
3
), pp.
1539
1551
.10.1109/TIE.2013.2257147
15.
Fang
,
J.
, and
Ren
,
Y.
,
2012
, “
Decoupling Control of Magnetically Suspended Rotor System in Control Moment Gyros Based on an Inverse System Method
,”
IEEE/ASME Trans. Mechatron.
,
17
(
6
), pp.
1133
1144
.10.1109/TMECH.2011.2159618
16.
Fang
,
J.
, and
Ren
,
Y.
,
2012
, “
Self-Adaptive Phase-Lead Compensation Based on Unsymmetrical Current Sampling Resistance Network for Magnetic Bearing Switching Power Amplifiers
,”
IEEE Trans. Ind. Electron.
,
59
(
2
), pp.
1218
1227
.10.1109/TIE.2011.2161060
17.
Yubisui
,
Y.
,
Kobayashi
,
S.
,
Amano
,
R.
, and
Sugiura
,
T.
,
2011
, “
Effects of Nonlinearity of Magnetic Force on Passing Through a Critical Speed of a Rotor With a Superconducting Bearing
,”
IEEE Trans. Ind. Electron.
,
58
(
2
), pp.
629
646
.10.1109/TIE.2010.2046004
18.
Ito
,
M.
,
Fujiwara
,
H.
, and
Matsushita
,
O.
,
2010
, “
Q-Value Evaluation and Rotational Test of Flexible Rotor Supported by AMBs
,”
J. Syst. Des. Dyn.
,
4
(
5
), pp.
725
737
10.1299/jsdd.4.725.
19.
Lei
,
S.
, and
Palazzolo
,
A.
,
2008
, “
Control of Flexible Rotor Systems With Active Magnetic Bearings
,”
ASME J. Sound Vib.
,
314
(
1–2
), pp.
19
38
.10.1016/j.jsv.2007.12.028
20.
Yu
,
H.-C.
,
Lin
,
Y.-H.
, and
Chu
,
C.-L.
,
2007
, “
Robust Modal Vibration Suppression of a Flexible Rotor
,”
Mech. Syst. Sig. Process.
,
21
(
1
), pp.
334
347
.10.1016/j.ymssp.2005.10.007
21.
Sahinkaya
,
M. N.
,
Abulrub
,
N. A. G.
, and
Burrows
,
C. R.
,
2011
, “
An Adaptive Multi-Objective Controller for Flexible Rotor and Magnetic Bearing Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
133
(
3
), p.
031003
.10.1115/1.4003421
22.
Mushi
,
S. E.
,
Lin
,
Z.
, and
Allaire
,
P. E.
,
2012
, “
Design, Construction, and Modeling of a Flexible Rotor Active Magnetic Bearing Test Rig
,”
IEEE Trans. Mechatron.
,
17
(
6
), pp.
1170
1182
.10.1109/TMECH.2011.2160456
23.
Jang
,
M. J.
,
Chen
,
C. L.
, and
Tsao
,
Y. M.
,
2005
, “
Sliding Mode Control for Active Magnetic Bearing System With Flexible Rotor
,”
ASME J. Franklin Inst.
,
342
(
4
), pp.
401
419
.10.1016/j.jfranklin.2005.01.006
24.
Garofalo
,
F.
,
Marino
,
P.
, and
Scala
,
S.
,
1996
, “
Control of DC-DC Converters With Linear Optimal Feedback and Nonlinear Feedforward
,”
IEEE Trans. Power Electron.
,
9
(
6
), pp.
607
615
.10.1109/63.334776
25.
Priewasser
,
R.
,
Agostinelli
,
M.
, and
Unterrieder
,
C.
,
2014
, “
Modeling, Control, and Implementation of DC–DC Converters for Variable Frequency Operation
,”
IEEE Trans. Power Electron.
,
29
(
1
), pp.
287
301
.10.1109/TPEL.2013.2248751
26.
Roes
,
M. G. L.
,
Duarte
,
J. L.
, and
Hendrix
,
M. A. M.
,
2011
, “
Disturbance Observer-Based Control of a Dual-Output LLC Converter for Solid-State Lighting Applications
,”
IEEE Trans. Power Electron.
,
29
(
1
), pp.
2018
2027
.10.1109/TPEL.2010.2101086
27.
Habibullah
,
H.
,
Pota
,
H.
,
Petersen
,
I.
, and
Rana
,
M. S.
,
2014
, “
Tracking of Triangular Reference Signals Using LQG Controllers for Lateral Positioning of an AFM Scanner Stage
,”
IEEE/ASME Trans. Mechatron.
,
19
(
4
), pp.
1105
1114
.10.1109/TMECH.2013.2270560
28.
Camblong
,
H.
,
Nourdine
,
S.
,
Vechiu
,
I.
, and
Tapia
,
G.
,
2012
, “
Comparison of an Island Wind Turbine Collective and Individual Pitch LQG Controllers Designed to Alleviate Fatigue Loads
,”
IET Renew. Power Gener.
,
6
(
4
), pp.
267
275
.10.1049/iet-rpg.2011.0072
29.
Barut
,
M.
,
Bogosyan
,
S.
, and
Gokasan
,
M.
,
2007
, “
Speed-Sensorless Estimation for Induction Motors Using Extended Kalman Filters
,”
IEEE Trans. Ind. Electron.
,
54
(
1
), pp.
272
280
.10.1109/TIE.2006.885123
30.
Kim
,
O.-S.
,
Lee
,
S.-H.
, and
Han
,
D.-C.
,
2003
, “
Positioning Performance and Straightness Error Compensation of the Magnetic Levitation Stage Supported by the Linear Magnetic Bearing
,”
IEEE Trans. Ind. Electron.
,
50
(
2
), pp.
374
378
.10.1109/TIE.2003.809415
31.
Darbandi
,
S. M.
,
Behzad
,
M.
,
Salarieh
,
H.
, and
Mehdigholi
,
H.
,
2014
, “
Linear Output Feedback Control of a Three-Pole Magnetic Bearing
,”
IEEE Trans. Mechatron.
,
19
(4), pp. 1323–1330.10.1109/TMECH.2013.2280594
32.
Schuhmann
,
T.
,
Hofmann
,
W.
, and
Werner
,
R.
,
2012
, “
Improving Operational Performance of Active Magnetic Bearings Using Kalman Filter and State Feedback Control
,”
IEEE Trans. Ind. Electron.
,
59
(
2
), pp.
821
829
.10.1109/TIE.2011.2161056
33.
Kang
,
Y.
,
Lin
,
T.
, and
Chang
,
Y.
,
2008
, “
Optimal Balancing of Flexible Rotors by Minimizing the Condition Number of Influence Coefficients
,”
Mech. Mach. Theory
,
43
(
7
), pp.
891
908
.10.1016/j.mechmachtheory.2007.06.005
34.
EI-Shafei
,
A.
,
EI-Kabbany
,
A. S.
, and
Younan
,
A. A.
,
2004
, “
Rotor Balancing Without Trial Weights
,”
ASME J. Eng. Gas Turbines Power
,
126
(
3
), pp.
604
609
.10.1115/1.1762903
35.
Saldarriaga
,
M. V.
,
Steffen
,
V. J.
, and
Hagopian
,
J. D.
,
2011
, “
On the Balancing of Flexible Rotating Machines by Using an Inverse Problem Approach
,”
J. Vib. Control
,
17
(
7
), pp.
1021
1033
.10.1177/1077546310370669
36.
Zhu
,
L.
, and
Knospe
,
C.
,
2010
, “
Modeling of Nonlaminated Electromagnetic Suspension Systems
,”
IEEE/ASME Trans. Mechatron.
,
15
(
1
), pp.
59
69
.10.1109/TMECH.2009.2016656
37.
Arredondo
,
I.
,
Jugo
,
J.
, and
Etxebarria
,
V.
,
2008
, “
Modeling and Control of a Flexible Rotor System With AMB-Based Sustentation
,”
ASME ISA Trans.
,
47
(
4
), pp.
101
112
.10.1016/j.isatra.2007.04.004
38.
Li
,
G.
,
Lin
,
Z.
,
Allaire
,
P. E.
, and
Luo
,
J.
,
2006
, “
Modeling of a High Speed Rotor Test Rig With Active Magnetic Bearings
,”
ASME J. Vib. Acoust.
,
128
(
3
), pp.
269
281
.10.1115/1.2172254
39.
Li
,
G.
,
2007
, “
Robust Stabilization of Rotor-Active Magnetic Bearing Systems
,” Ph.D. dissertation, University of Virginia, Charlottesville, VA.
40.
Herzog
,
R.
,
Buhler
,
P.
,
Gahler
,
C.
, and
Larsonneur
,
R.
,
1996
, “
Unbalance Compensation Using Generalized Filters in the Multivariable Feedback of Magnetic Bearings
,”
IEEE Trans. Control Syst. Technol.
,
4
(
5
), pp.
580
586
.10.1109/87.531924
You do not currently have access to this content.