In order to analyze the difference between the inverse diffusion flame (IDF) and normal diffusion flame (NDF) under various conditions, the emission spectra of OH* and CH* chemiluminescence in two dimensions measured by hyperspectral and ultraviolet (UV) cameras are described in this article. The results show that CH* mainly appears in the fuel side near the flame front, while OH* distribution can reflect the reaction region of flame. According to the OH* radial distributions in IDF and NDF, the flame can be divided into three parts: the core area of the flame, the transition region of the flame, and the developed region of flame. The peak intensity of CH* in IDF is higher than that in NDF. Moreover, the length of reaction region in NDF increases with O/C equivalence ratio ([O/C]e) until it reaches a steady value, while in IDF the length decreased with the increase of [O/C]e.

References

1.
Razzaq
,
R.
,
Li
,
C. S.
, and
Zhang
,
S. J.
,
2013
, “
Coke Oven Gas: Availability, Properties, Purification, and Utilization in China
,”
Fuel
,
113
, pp.
287
299
.10.1016/j.fuel.2013.05.070
2.
Yang
,
Z.
,
Ding
,
W.
,
Zhang
,
Y.
,
Lu
,
X.
,
Zhang
,
Y.
, and
Shen
,
P.
,
2010
, “
Catalytic Partial Oxidation of Coke Oven Gas to Syngas in an Oxygen Permeation Membrane Reactor Combined With NiO/MgO Catalyst
,”
Int. J. Hydrogen Energy
,
35
(
12
), pp.
6239
6247
.10.1016/j.ijhydene.2009.07.103
3.
Mahesh
,
S.
, and
Mishra
,
D. P.
,
2008
, “
Flame Stability and Emission Characteristics of Turbulent LPG IDF in a Backstep Burner
,”
Fuel
,
87
(
12
), pp.
2614
2619
.10.1016/j.fuel.2008.02.001
4.
Mikofski
,
M. A.
,
Williams
,
T. C.
, and
Shaddix
,
C. R.
,
2006
, “
Flame Height Measurement of Laminar Inverse Diffusion Flames
,”
Combust. Flame
,
146
(
1–2
), pp.
63
72
.10.1016/j.combustflame.2006.04.006
5.
Zhen
,
H. S
.,
Leung
,
C. W.
, and
Cheung
,
C. S.
,
2009
, “Heat Transfer From a Turbulent Swirling Inverse Diffusion Flame to a Flat Surface,”
Int. J. Heat Mass Trans.
,
52
(11–12), pp.
2740
2748
.10.1016/j.ijheatmasstransfer.2008.12.010
6.
Kaplan
,
C. R.
, and
Kailashnath
,
K.
,
2001
, “
Flow Field Effects on Soot Formation in Normal and Inverse Diffusion Flames
,”
Combust. Flame
,
124
(
1–2
), pp.
275
294
.10.1016/S0010-2180(00)00196-6
7.
Demarco
,
R.
,
Nmira
,
F.
, and
Consalvi
,
J. L.
,
2013
, “
Influence of Thermal Radiation on Soot Production in Laminar Axisymmetric Diffusion Flames
,”
J. Quant. Spectrosc. Radiat. Transfer
,
120
, pp.
52
69
.10.1016/j.jqsrt.2013.02.004
8.
Sunderland
,
P. B.
,
Krishnan
,
S. S.
, and
Gore
,
J. P.
,
2004
, “
Effects of Oxygen Enhancement and Gravity on Normal and Inverse Laminar Jet Diffusion Flames
,”
Combust. Flame
,
136
(1--2), pp.
254
256
.10.1016/j.combustflame.2003.09.015
9.
Takagi
,
T.
,
Wu
,
T.
, and
Komiyama
,
M.
,
1996
, “
Preferential Diffusion Effects on the Temperature in Usual and Inverse Diffusion Flames
,”
Combust. Flame
,
106
(
3
), pp.
252
260
.10.1016/0010-2180(95)00255-3
10.
Javier
,
B.
, and
Tatiana
,
G. A.
,
2010
, “
Diagnostic Techniques for the Monitoring and Control of Practical Flames
,”
Prog. Energy Combust. Sci.
,
36
(
4
), pp.
375
411
.10.1016/j.pecs.2009.11.005
11.
Gaydon
,
A. G.
, and
Wolfhard
,
H. G.
,
1960
,
Flames: Their Structure, Radiation and Temperature
,
Chapman and Hall
,
London
.
12.
Ballester
,
J.
,
Hernández
,
R.
,
Sanz
,
A.
,
Somlarz
,
A.
,
Barroso
,
J.
, and
Pina
,
A.
,
2009
, “
Chemiluminescence Monitoring in Premixed Flames of Natural Gas and Its Blends With Hydrogen
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2983
2991
.10.1016/j.proci.2008.07.029
13.
Rieker
,
G. B.
,
Jeffries
,
J. B.
,
Hanson
,
R. K.
,
Mathur
,
T.
,
Gruber
,
M. R.
, and
Carter
,
C. D.
,
2009
, “
Diode Laser-Based Detection of Combustor Instabilities With Application to a Scramjet Engine
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
831
838
.10.1016/j.proci.2008.06.114
14.
Li
,
Z. S.
,
Li
,
B.
,
Sun
,
Z. W.
, and
Aldén
,
M.
,
2010
, “
Turbulence and Combustion Interaction: High Resolution Local Flame Front Structure Visualization Using Simultaneous Single-Shot PLIF Imaging of CH, OH, and CH2O in a Piloted Premixed Jet Flame
,”
Combust. Flame
,
157
(
6
), pp.
1087
1096
.10.1016/j.combustflame.2010.02.017
15.
Kothnur
,
P. S.
,
Tsurikov
,
M. S.
,
Clemens
,
N. T.
,
Donbar
,
J. M.
, and
Carter
,
C. D.
,
2002
, “
Planar Imaging of CH/OH and Velocity in Turbulent Non-Premixed Jet Flames
,”
Proc. Combust. Inst.
,
29
(2), pp.
1921
1927
.10.1016/S1540-7489(02)80233-4
16.
Lacoste
,
D. A.
,
Moeck
,
J. P.
,
Durox
,
D.
,
Laux
,
C. O.
, and
Schuller
,
T.
,
2013
, “
Effect of Nanosecond Repetitively Pulsed Discharges on the Dynamics of a Swirl-Stabilized Lean Premixed Flame
,”
ASME J. Eng. Gas Turbines Power
,
135
(
10
), p.
101501
.10.1115/1.4024961
17.
Lauer
,
M.
,
Zellhuber
,
M.
,
Sattelmayer
,
T.
,
Aul
,
C. J.
, and
Lee
,
E.
,
2011
, “
Determination of the Heat Release Distribution in Turbulent Flames by a Model Based Correction of OH* Chemiluminescence
,”
ASME J. Eng. Gas Turbines Power
,
133
(12), p.
121501
.10.1115/1.4004124
18.
Marchese
,
A. J.
,
Dryer
,
F. L.
,
Nayagam
,
V.
, and
Colantonio
,
R. O.
,
1996
, “
Hydroxyl Radical Chemiluminescence Imaging and the Structure of Microgravity Droplet Flames
,”
Proc. Combust. Inst.
,
26
(
1
), pp.
1219
1226
.10.1016/S0082-0784(96)80338-9
19.
Kojima
,
J.
,
Ikeda
,
Y.
, and
Nakajima
,
T.
,
2005
, “
Basic Aspects of OH(A), CH(A), and C2(d) Chemiluminescence in the Reaction Zone of Laminar Methane-Air Premixed Flames
,”
Combust. Flame
,
140
(
1–2
), pp.
34
45
.10.1016/j.combustflame.2004.10.002
20.
Fu
,
J.
,
Tang
,
C. L.
,
Jin
,
W.
,
Thi
,
L. D.
,
Huang
,
Z. H.
, and
Zhang
,
Y.
,
2013
, “
Study on Laminar Flame Speed and Flame Structure of Syngas With Varied Compositions Using OH-PLIF and Spectrograph
,”
Int. J. Hydrogen Energy
,
38
(
3
), pp.
1636
1643
.10.1016/j.ijhydene.2012.11.023
21.
Zhang
,
T.
,
Guo
,
Q. H.
,
Song
,
X. D.
,
Zhou
,
Z. J.
, and
Yu
,
G. S.
,
2013
, “
The Chemiluminescence and Structure Properties of Normal/Inverse Diffusion Flames
,”
J. Spectrosc.
,
2013
, p.
304717
.10.1155/2013/304717
22.
Beér
,
J. M.
, and
Chigier
,
N. A.
,
1972
,
Combustion Aerodynamics
,
Applied Science Publishers
,
London
.
23.
Zhang
,
T.
,
Guo
,
Q. H.
,
Lang
,
Q. F.
,
Dai
,
Z. H.
, and
Yu
,
G. S.
,
2012
, “
Distribution Characteristics of OH*, CH*, and C2* Luminescence in CH4/O2 Co-Flow Diffusion Flames
,”
Energy Fuel
,
26
(9), pp.
5503
5508
.10.1021/ef300970a
24.
Carl
,
S. A.
,
Van Poppel
,
M.
, and
Peeters
,
J.
,
2003
, “
Identification of the CH + O2 → OH(A) + CO Reaction as the Source of OH(A-X) Chemiluminescence in C2H2/O/H/O2 Atomic Flames and Determination of Its Absolute Rate Constant Over the Range T=296 to 511 K
,”
J. Phys. Chem. A
,
107
(
50
), pp.
11001
11007
.10.1021/jp035568j
25.
Smith
,
G. P.
,
Park
,
C.
, and
Luque
,
J.
,
2005
, “
A Note on Chemiluminescence in Low-Pressure Hydrogen and Methane–Nitrous Oxide Flames
,”
Combust. Flame
,
140
(
4
), pp.
385
389
.10.1016/j.combustflame.2004.11.011
26.
Tamura
,
M.
,
Berg
,
P. A.
,
Harrington
,
J. E.
,
Luque
,
J.
,
Jeffries
,
J. B.
,
Smith
,
G. P.
, and
Crosley
,
D. R.
,
1998
, “
Collisional Quenching of CH(A), OH(A), and NO(A) in Low Pressure Hydrocarbon Flames
,”
Combust. Flame
,
114
(
3–4
), pp.
502
514
.10.1016/S0010-2180(97)00324-6
27.
Tripathi
,
M. M.
,
Krishnan
,
S. R.
,
Srinivasan
,
K. K.
,
Yueh
,
F. Y.
, and
Singh
,
J. P.
,
2012
, “
Chemiluminescence-Based Multivariate Sensing of Local Equivalence Ratios in Premixed Atmospheric Methane-Air Flames
,”
Fuel
,
93
, pp.
684
691
.10.1016/j.fuel.2011.08.038
28.
Tamir
,
A.
,
1994
,
Impinging-Stream Reactors: Fundamentals and Applications
,
Elsevier
,
Amsterdam
.
You do not currently have access to this content.