The breakup, penetration, droplet size, and size distribution of a Jet A-1 fuel in air crossflow has been investigated with focus given to the impact of surrounding air pressure. Data have been collected by particle Doppler phased analyzer (PDPA), Mie-scattering with high speed photography augmented by laser sheet, and Mie-scattering with intensified charge-coupled device (ICCD) camera augmented by nanopulse lamp. Nozzle orifice diameter, do, was 0.508 mm and nozzle orifice length to diameter ratio, lo/do, was 5.5. Air crossflow velocities ranged from 29.57 to 137.15 m/s, air pressures from 2.07 to 9.65 bar, and temperature held constant at 294.26 K. Fuel flow provides a range of fuel/air momentum flux ratio (q) from 5 to 25 and Weber number from 250 to 1000. From the results, adjusted correlation of the mean drop size has been proposed using drop size data measured by PDPA as follows: (D0/D32)=0.267Wea0.44q0.08(ρl/ρa)0.30(μl/μa)-0.16. This correlation agrees well and shows roles of aerodynamic Weber number, Wea, momentum flux ratio, q, and density ratio, ρl/ρa. Change of the breakup regime map with respect to surrounding air pressure has been observed and revealed that the boundary between each breakup modes can be predicted by a transformed correlation obtained from above correlation. In addition, the spray trajectory for the maximum Mie-scattering intensity at each axial location downstream of injector is extracted from averaged Mie-scattering images. From these results, correlations with the relevant parameters including q, x/do, density ratio, viscosity ratio, and Weber number are made over a range of conditions. According to spray trajectory at the maximum Mie-scattering intensity, the effect of surrounding air pressure becomes more important in the farfield. On the other hand, effect of aerodynamic Weber number is more important in the nearfield.

References

1.
Becker
,
J.
, and
Hassa
,
C.
,
2002
, “
Breakup and Atomization of a Kerosene Jet in Crossflow at Elevated Pressure
,”
Atomization Sprays
,
12
(
1–3
), pp.
49
67
.10.1615/AtomizSpr.v12.i123.30
2.
Tambe
,
S. B.
,
Jeng
,
S.-M.
,
Mongia
,
H.
, and
Hsiao
,
G.
,
2005
, “
Liquid Jets in Subsonic Crossflow
,”
AIAA
Paper No. 2005-731. 10.2514/6.2005-731
3.
Elshamy
,
O. M.
, and
Jeng
,
S.-M.
,
2005
, “
Study of Liquid Jet in Crossflow at Elevated Ambient Pressures
,”
18th Annual Conference on Liquid Atomization and Spray Systems
, Irvine, CA, May 22–25.
4.
Rachner
,
M.
,
Becker
,
J.
,
Hassa
,
C.
, and
Doerr
,
T.
,
2002
, “
Modelling of the Atomization of a Plain Liquid Fuel Jet in Crossflow at Gas Turbine Conditions
,”
Aerosp. Sci. Technol.
,
6
(
7
), pp.
495
506
.10.1016/S1270-9638(01)01135-X
5.
Elshamy
,
O. M.
,
2006
, “
Experimental Investigations of Steady and Dynamic Behavior of Transverse Liquid Jets
,” Ph.D. thesis, University of Cincinnati, Cincinnati, OH.
6.
Amighi
,
A.
,
Eslamian
,
M.
, and
Ashgriz
,
N.
,
2009
, “
Trajectory of a Liquid Jet in High Pressure and High Temperature Subsonic Air Crossflow
,”
11th International Annual Conference on Liquid Atomization and Spray Systems (ICLASS 2009), Vail, CO, July 26–30
.
7.
Geery
,
E. L.
, and
Margetts
,
M. J.
,
1969
, “
Penetration of a High-Velocity Gas Stream by a Water Jet
,”
J. Spacecraft
,
6
(
1
), pp.
79
81
.10.2514/3.29538
8.
Mazallon
,
J.
,
Dai
,
Z.
, and
Faeth
,
G. M.
,
1999
, “
Primary Breakup of Nonturbulent Round Liquid Jets in Gas Crossflows
,”
Atomization Sprays
,
9
(
3
), pp.
291
312
10.1615/AtomizSpr.v9.i3.40.
9.
Sallam
,
K. A.
,
Aalburg
,
C.
, and
Faeth
,
G. M.
,
2004
, “
Breakup of Round Nonturbulent Liquid Jets in Gaseous Crossflow
,”
AIAA J.
,
42
(
12
), pp.
2529
2540
.10.2514/1.3749
10.
Madabhushi
,
R. K.
,
Leong
,
M. Y.
,
Arienti
,
M.
,
Brown
,
C. T.
, and
McDonell
,
V. G.
,
2006
, “
On the Breakup Regime Map of Liquid Jet in Crossflow
,”
19th Annual Conference on Liquid Atomization and Spray Systems
, Toronto, Canada, May 23–26.
11.
Lakhamraju
,
R. R.
,
2005
, “
Liquid Jet Breakup Studies in Subsonic Airstream at Elevated Temperatures
,” M.Sc. thesis, University of Cincinnati, Cincinnati, OH.
12.
Brown
,
C. T.
,
Mondragon
,
U.
, and
McDonell
,
V.
,
2013
, “
Behavior of Alternative Fuels Injected as a Liquid Jet Into a Crossflow
,”
AIAA
Paper No. 2013-0161. 10.2514/6.2013-0161
13.
Ragucci
,
R.
,
Bellofiore
,
A.
, and
Cavaliere
,
A.
,
2007
, “
Breakup and Breakdown of Bent Kerosene Jets in Gas Turbine Conditions
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
2231
2238
.10.1016/j.proci.2006.07.204
14.
Ingebo
,
R. D.
,
1985
, “
Aerodynamic Effect of Combustor Inlet Air Pressure on Fuel Jet Atomization
,”
J. Propul. Power
,
1
(
2
), pp.
137
142
.10.2514/3.22771
15.
Less
,
D. M.
, and
Schetz
,
J. A.
,
1986
, “
Transient Behavior of Liquid Jets Injected Normal to a High-Velocity Gas Stream
,”
AIAA J.
,
24
(
12
), pp.
1979
1986
.10.2514/3.9556
16.
Pontus
,
E.
,
Raik
,
O.
, and
Jens
,
K.
,
2006
, “
Experimental Investigations of a Low Weber Liquid Spray in Air Cross Flow
,”
10th International Conference on Liquid Atomization and Spray Systems
, Kyoto, Japan, Aug. 27–Sept. 1.
17.
Chou
,
W -H.
,
Hsiang
,
L -P.
, and
Faeth
,
G. M.
,
1997
, “
Temporal Properties of Drop Breakup in the Shear Breakup Regime
,”
Int. J. Multiphase Flow
,
23
(
4
), pp.
651
669
.10.1016/S0301-9322(97)00006-2
18.
Wu
,
P. K.
,
Tseng
,
L. K.
, and
Faeth
,
G. M.
,
1992
, “
Primary Breakup in Gas/Liquid Mixing Layers for Turbulent Liquids
,”
Atomization Sprays
,
2
(
3
), pp.
295
317
10.1615/AtomizSpr.v2.i3.60.
19.
Wu
,
P. K.
,
Kirkendall
,
K. A.
,
Fuller
,
R. P.
, and
Najad
,
A. S.
,
1997
, “
Breakup Processes of Liquid Jets in Subsonic Crossflows
,”
J. Propul. Power
,
13
(
1
), pp.
64
73
.10.2514/2.5151
20.
No
,
S. Y.
,
2013
, “
Empirical Correlations for Breakup Length of Liquid Jet in Uniform Cross Flow—A Review
,”
J. ILASS-Korea
,
18
(
1
), pp.
35
43
.
21.
No
,
S. Y.
,
2011
, “
Empirical Correlations for Penetration Height of Liquid Jet in Uniform Cross Flow—A Review
,”
J. ILASS-Korea
,
16
(
4
), pp.
176
185
.
22.
Lozano
,
A.
,
Smith
,
S. H.
,
Mungal
,
M. G.
, and
Hanson
,
R. K.
,
1994
, “
Concentration Measurements in a Transverse Jet by Planar Laser-Induced Fluorescence of Acetone
,”
AIAA J.
,
32
(
1
), pp.
218
221
.10.2514/3.11974
23.
Ragucci
,
R.
,
Bellofiore
,
A.
, and
Cavaliere
,
A.
,
2007
, “
Trajectory and Momentum Coherence Breakdown of a Liquid Jet in High-Density Air Cross-Flow
,”
Atomization Sprays
,
17
(
1
), pp.
47
70
.10.1615/AtomizSpr.v17.i1.20
24.
Adelberg
,
M
.,
1967
, “
Breakup Rate and Penetration of a Liquid Jet in a Gas Stream
,”
AIAA J.
,
5
(
8
), pp.
1408
1415
.10.2514/3.4213
25.
Stenzler
,
J. N.
,
Lee
,
J. G.
,
Santavicca
,
D. A.
, and
Lee
,
W.
,
2006
, “
Penetration of Liquid Jets in a Cross-Flow
,”
Atomization Sprays
,
16
(
8
), pp.
887
906
.10.1615/AtomizSpr.v16.i8.30
26.
Elshamy
,
O. M.
,
Tambe
,
S. B.
,
Cai
,
J.
, and
Jeng
,
S.-M.
,
2006
, “
Structure of Liquid Jets in Subsonic Crossflow at Elevated Ambient Pressures
,”
AIAA
Paper No. 2006-1224. 10.2514/6.2006-1224
27.
Herrmann
,
M.
,
Arienti
,
M.
, and
Soteriou
,
M.
,
2011
, “
The Impact of Density Ratio on the Liquid Core Dynamics of a Turbulent Liquid Jet Injected Into a Crossflow
,”
ASME J. Eng. Gas Turbines Power
,
133
(
6
), p.
061501
.10.1115/1.4002273
28.
Song
,
J.
,
Ramasubramanian
,
C.
, and
Lee
,
J. G.
,
2014
, “
Response of Liquid Jet to Modulated Crossflow
,”
Atomization Sprays
,
24
(
2
), pp.
129
154
.10.1615/AtomizSpr.2013008071
29.
Kihm
,
K. D.
,
Lyn
,
G. M
, and
Son
,
S. Y.
,
1995
, “
Atomization of Cross-Injecting Sprays Into Convective Air Stream
,”
Atomization Sprays
,
5
(
4-5
), pp.
417
433
10.1615/AtomizSpr.v5.i45.40.
30.
Rosin.
,
P.
, and
Rammler
,
E.
,
1933
, “
The Laws Governing the Fineness of Powdered Coal
,”
J. Inst. Fuel
,
7
(
31
), pp.
29
36
.
31.
Rizk
,
N. K.
, and
Lefebvre
,
A. H.
,
1985
, “
Drop-Size Distribution Characteristics of Spill-Return Atomizers
,”
J. Propul. Power
,
1
(
3
), pp.
16
33
.10.2514/3.22753
32.
Lefebvre
,
A. H.
,
1989
,
Atomization and Sprays
,
Hemisphere, New York
, Chap. 3.
33.
Wu
,
P.-K.
,
Kirkendall
,
K. A.
,
Fuller
,
R. P.
, and
Nejad
,
A. S.
,
1998
, “
Spray Structures of Liquid Jets Atomized in Subsonic Crossflows
,”
J. Propul. Power
,
14
(
2
), pp.
173
182
.10.2514/2.5283
34.
Brown
,
C. T.
,
Mondragon
,
U. M.
, and
McDonell
,
V. G.
,
2007
, “
Investigation of the Effect of Injector Discharge Coefficient in Penetration of a Plain Liquid Jet Into a Subsonic Crossflow
,”
20th Annual Conference on Liquid Atomization and Spary Systems
, Chicago, IL, May 15–18.
35.
Schetz
,
J. A.
, and
Padhye
,
A.
,
1977
, “
Penetration and Breakup of Liquids in Subsonic Airstreams
,”
AIAA J.
,
15
(
10
), pp.
1385
1390
.10.2514/3.60805
You do not currently have access to this content.