Rain ingestion can significantly affect the performance and operability of gas turbine aero-engines. In order to study and understand rain ingestion phenomena at engine level, a performance model is required that integrates component models capable of simulating the physics of rain ingestion. The current work provides, for the first time in the open literature, information about the setup of a mixed-fidelity engine model suitable for rain ingestion simulation and corresponding overall engine performance results. Such a model can initially support an analysis of rain ingestion during the predesign phase of engine development. Once components and engine models are validated and calibrated versus experimental data, they can then be used to support certification tests, the extrapolation of ground test results to altitude conditions, the evaluation of control or engine hardware improvements and eventually the investigation of in-flight events. In the present paper, component models of various levels of fidelity are first described. These models account for the scoop effect at engine inlet, the fan effect and the effects of water presence in the operation and performance of the compressors and the combustor. Phenomena such as velocity slip between the liquid and gaseous phases, droplet breakup, droplet–surface interaction, droplet and film evaporation as well as compressor stages rematching due to evaporation are included in the calculations. Water ingestion influences the operation of the components and their matching, so in order to simulate rain ingestion at engine level, a suitable multifidelity engine model has been developed in the Proosis simulation platform. The engine model's architecture is discussed, and a generic high bypass turbofan is selected as a demonstration test case engine. The analysis of rain ingestion effects on engine performance and operability is performed for the worst case scenario, with respect to the water quantity entering the engine. The results indicate that rain ingestion has a strong negative effect on high-pressure compressor surge margin, fuel consumption, and combustor efficiency, while more than half of the water entering the core is expected to remain unevaporated and reach the combustor in the form of film.

References

1.
AGARD-AR-332
,
1995
,
Recommended Practices for the Assessment of the Effects of Atmospheric Water Ingestion on the Performance and Operability of Gas Turbine Engines
,
North Atlantic Treaty Organization
,
Linthicum Heights, MD
.
2.
Volk
,
L.
,
1992
, “
Power Loss in Inclement Weather
,”
Flight Safety Foundation 45th Annual International Air Safety Seminar
,
Long Beach, CA
, Nov. 2–5, pp.
238
248
.
3.
Sánta
,
I.
,
2000
, “
The Effect of Water Ingestion on the Operation of the Gas Turbine Engine
,”
22nd Congress of International Council of the Aeronautical Sciences
,
Harrogate, UK
, Aug. 28–Sept. 1, pp. 524.1–524.9.
4.
National Transportation Safety Board (NTSB)
,
2010
,
Aviation Safety: Icing and Winter Weather-Related Recommendations
,
NTSB
,
Washington, DC
, p. GAO-10-679SP.
5.
Tsuchiya
,
T.
, and
Murthy
,
S. N. B.
,
1982
, “
Water Ingestion Into Jet Engine Axial Compressors
,”
AIAA
Paper No. 82-0196.10.2514/6.1982-196
6.
Tsuchiya
,
T.
, and
Murthy
,
S. N. B.
,
1983
, “
Axial-Compressor Flow Distortion With Water Ingestion
,”
AIAA
Paper No. 83-0004.10.2514/6.1983-4
7.
Murthy
,
S. N. B.
,
1989
, “
Effect of Heavy Rain on Aviation Engines
,”
AIAA
Paper No. 89-0799.10.2514/6.1989-799
8.
Laing
,
P.
,
Ehresman
,
C. M.
, and
Murthy
,
S. N. B.
,
1993
, “
Two and Three-Dimensional Prediffuser Combustor Studies With Air–Water Mixture
,”
AIAA
Paper No. 93-0240.10.2514/6.1993-240
9.
Laing
,
P.
,
Shastri
,
R. P.
,
Ehresman
,
C. M.
, and
Murthy
,
S. N. B.
,
1993
, “
Three-Dimensional Prediffuser Combustor Studies With Air–Water Mixture
,”
AIAA
Paper No. 93-2474.10.2514/6.1993-2474
10.
Murthy
,
S. N. B.
,
1996
, “
Effect of Atmospheric Water Ingestion on the Performance and Operability of Flight Gas Turbines
,”
AIAA
Paper No. 96-3059.10.2514/6.1996-3059
11.
Venkataramani
,
K. S.
, and
McVey
,
L. J.
,
2006
, “
Scoop Effects in Inclement Weather Operation
,”
AIAA
Paper No. 2006-207.10.2514/6.2006-207
12.
Gera
,
D.
, and
Vittal
,
B. R.
,
2009
, “
Computer Simulation of Rain Ingestion and Ice Accretion in a Jet Engine Using Wind Tunnel Generated Droplet Data
,” XIX International Symposium on Air Breathing Engines (ISABE 2009), Montreal, Canada, Sept. 7–11, ISABE Paper No. 2009-08, pp. 1003-1012.
13.
Das
,
K.
,
Hamed
,
A.
, and
Basu
,
D.
,
2005
, “
Effect of Super-Cooled Water Droplet Characteristics on Fan Rotor Ice Accretion
,” 17th International Symposium on Airbreathing Engines (ISABE), Munich, Germany, Sept. 4–9, ISABE Paper No. 2005-1248.
14.
Das
,
K.
,
Hamed
,
A.
, and
Basu
,
D.
,
2006
, “
Droplet Trajectories and Collection on Fan Rotor at Off-Design Conditions
,”
ASME
Paper No. GT2006-91214.10.1115/GT2006-91214
15.
Williams
,
J.
, and
Young
,
J. B.
,
2006
, “
Movement of Deposited Water on Turbomachinery Rotor Blade Surfaces
,”
ASME J. Turbomach.
,
129
(
2
), pp.
394
403
.10.1115/1.2437780
16.
Nikolaidis
,
T.
,
Pilidis
,
P.
,
Teixeira
,
J. A.
, and
Pachidis
,
V.
,
2008
, “
Water Film Formation on an Axial Flow Compressor Rotor Blade
,”
ASME
Paper No. GT2008-50137.10.1115/GT2008-50137
17.
Loebig
,
J.
,
Vittal
,
B.
, and
Booher
,
M.
,
1998
, “
Numerical Simulation of Water/Methanol Evaporation in an Axial Flow Gas Turbine Compressor
,”
AIAA
Paper No. 98-3559.10.2514/6.1998-3559
18.
White
,
A. J.
, and
Meacock
,
A. J.
,
2011
, “
Wet Compression Analysis Including Velocity Slip Effects
,”
ASME J. Eng. Gas Turbines Power
,
133
(
8
), p.
081701
.10.1115/1.4002662
19.
Matz
,
C.
,
Kappis
,
W.
,
Cataldi
,
G.
,
Mundinger
,
G.
,
Bischoff
,
S.
,
Helland
,
E.
, and
Ripken
,
M.
,
2008
, “
Prediction of Evaporative Effects Within the Blading of an Industrial Axial Compressor
,”
ASME
Paper No. GT2008-50166.10.1115/GT2008-50166
20.
Venkataramani
,
K. S.
,
Pater
,
B. R.
, and
Reimann
,
D. L.
,
2005
, “
Turbo-Fan Engine Hail Ingestion Simulation in a Cycle Deck Model
,”
AIAA
Paper No. 2005-1126.10.2514/6.2005-1126
21.
Khan
,
J. R.
, and
Wang
,
T.
,
2010
, “
3D Modeling of Wet-Compression in a Single Stage Compressor Including Liquid Particle Erosion Analysis
,”
ASME
Paper No. GT2010-23722.10.1115/GT2010-23722
22.
Ghenaiet
,
A.
,
2012
, “
Effects of Solid Particle Ingestion Through an HP Turbine
,”
ASME
Paper No. GT2012-69875.10.1115/GT2012-69875
23.
Schmehl
,
R.
,
Klose
,
G.
,
Maier
,
G.
, and
Witting
,
S.
,
1998
, “
Efficient Numerical Calculation of Evaporating Sprays in Combustion Chamber Flows
,”
92nd Symposium on Gas Turbine Combustion, Emissions and Alternative Fuels
,
Lisbon, Portugal
, Oct. 12–16, Paper No. RTO-MP-14.
24.
Pilch
,
M.
, and
Erdman
,
C. A.
,
1987
, “
Use of Breakup Time Data and Velocity History Data to Predict the Maximum Size of Stable Fragments for Acceleration-Induced Breakup of a Liquid Drop
,”
Int. J. Multiphase Flow
,
13
(
6
), pp.
741
757
.10.1016/0301-9322(87)90063-2
25.
Kennedy
,
J. B.
, and
Roberts
,
J.
,
1990
, “
Rain Ingestion in a Gas Turbine Engine
,”
4th Institute for Liquid Atomization and Spray Systems (ILASS) Meeting
,
Hartford, CT
, May 21–23, pp. 154–186.
26.
Hsiang
,
L.-P.
, and
Faeth
,
G. M.
,
1992
, “
Near-Limit Drop Deformation and Secondary Breakup
,”
Int. J. Multiphase Flow
,
18
(
5
), pp.
635
652
.10.1016/0301-9322(92)90036-G
27.
Engdar
,
U.
,
Orbay
,
R. C.
,
Genrup
,
M.
, and
Klingmann
,
J.
,
2004
, “
Investigation of the Two-Phase Flow Field of the GTX100 Compressor Inlet During Off-Line Washing
,”
ASME
Paper No. GT2004-53141.10.1115/GT2004-53141
28.
Chaker
,
M.
,
Meher Homji
,
C. B.
, and
Mee
,
T.
,
2002
, “
Inlet Fogging of Gas Turbine Engines: Part A—Fog Droplet Thermodynamics, Heat Transfer and Practical Considerations
,”
ASME
Paper No. GT2002-30562.10.1115/GT2002-30562
29.
CRESCENDO Consortium,
2011
, “
Detailed Model Set-Up Capabilities—Achievements, Requirements and Directions
,” CRESCENDO Deliverable Report D.3.3.3, Project No. FP7-234344.
30.
Hubbard
,
G. L.
,
Denny
,
V. E.
, and
Mills
,
A. F.
,
1975
, “
Droplet Evaporation: Effects of Transients and Variable Properties
,”
Int. J. Heat Mass Transfer
,
18
(
9
), pp.
1003
1008
.10.1016/0017-9310(75)90217-3
31.
Saxena
,
S. C.
, and
Gambhir
,
R. S.
,
1963
, “
The Viscosity and Translational Thermal Conductivity of Gas Mixtures
,”
Br. J. Appl. Phys.
14
(
7
), pp.
436
438
.10.1088/0508-3443/14/7/315
32.
Taflin
,
D. C.
,
Zhang
,
S. H.
,
Allen
,
T.
, and
Davis
,
E. J.
,
1988
, “
Measurement of Droplet Interfacial Phenomena by Light-Scattering Techniques
,”
Am. Inst. Chem. Eng. J.
,
34
(
8
), pp.
1310
1320
.10.1002/aic.690340809
33.
Ranz
,
W. E.
, and
Marshall
,
W. R.
,
1952
, “
Evaporation From Drops—Part 1
,”
Chem. Eng. Prog.
,
48
(
3
), pp.
141
146
.
34.
Ranz
,
W. E.
, and
Marshall
,
W. R.
,
1952
, “
Evaporation From Drops—Part 2
,”
Chem. Eng. Prog.
,
48
(
4
), pp.
173
180
.
35.
Yarin
,
A. L.
,
Brenn
,
G.
,
Kastner
,
O.
,
Rensink
,
D.
, and
Tropea
,
C.
,
1999
, “
Evaporation of Acoustically Levitated Droplets
,”
J. Fluid Mech.
,
399
, pp.
151
204
.10.1017/S0022112099006266
36.
Larsen
,
P. S.
, and
Jensen
,
J. W.
,
1978
, “
Evaporation Rates of Drops in Forced Convection With Superposed Transverse Sound Field
,”
Int. J. Heat Mass Transfer
,
21
(
4
), pp.
511
517
.10.1016/0017-9310(78)90085-6
37.
Stanton
,
D. W.
, and
Rutland
,
C. J.
,
1998
, “
Multi-Dimensional Modeling of Thin Liquid Films and Spray–Wall Interactions Resulting From Impinging Sprays
,”
Int. J. Heat Mass Transfer
,
41
(
20
), pp.
3037
3054
.10.1016/S0017-9310(98)00054-4
38.
Schmehl
,
R.
,
Rosskamp
,
H.
,
Willmann
,
M.
, and
Wittig
,
S.
,
1999
, “
CFD Analysis of Spray Propagation and Evaporation Including Wall Film Formation and Spray/Film Interactions
,”
Int. J. Heat Fluid Flow
,
20
(
5
), pp.
520
529
.10.1016/S0142-727X(99)00041-7
39.
Li
,
S.
,
Libby
,
P.
, and
Williams
,
F.
,
1995
, “
Spray Impingement on a Hot Surface in Reacting Stagnation Flows
,”
AIAA J.
,
33
(
6
), pp.
1046
1055
.10.2514/3.12662
40.
Whalley
,
P. B.
,
1987
,
Boiling, Condensation and Gas–Liquid Flow
,
Oxford University
,
Oxford, UK
, Chap. 4.
41.
Zhluktov
,
S. V.
,
Bram
,
S.
, and
De Ruyck
,
J.
,
2001
, “
Injection of Water Droplets in an Axial Compressor
,” Proceedings of the Fifth World Conference on Experimental Heat Transfer, Fluid Mechanics, and Thermodynamics, Thessaloniki, Greece, Sept. 24–28, pp. 1415–1420.
42.
Martin
,
I. F.
,
2001
, “
CFD Water Ingestion Modelling Through a Generic High Bypass Engine. Viability and Capability
,” M.Sc. thesis, Cranfield University, Bedford, UK.
43.
Giannakoglou
,
K. C.
,
Simantirakis
,
G.
, and
Papailiou
,
K. D.
,
1991
, “
Turbine Cascade Calculations Through a Fractional Step Navier–Stokes Algorithm
,” ASME Paper No. 91-GT-55.
44.
Papailiou
,
K. D.
,
Sieros
,
G.
,
Vassilopoulos
,
Ch.
,
Chen
,
N. X.
, and
Huang
,
W. C.
,
1999
, “
Numerical Study on the 3-D Viscous Flow in a Centrifugal Compressor Impeller With and Without Consideration of Tip Clearance
,” 114th International Symposium for Air Breathing Engines (ISABE), Florence, Italy, Sept. 5–10, ISABE Paper No. 99-7268.
45.
European Aviation Safety Agency
,
2003
,
EASA: Certification Specifications for Engines
,
EASA, Cologne
,
Germany
.
46.
Kiousis
,
P.
,
Chaviaropoulos
,
P.
, and
Papailiou
,
K. D.
,
1992
, “
Meridional Flow Calculation Using Advanced CFD Techniques
,” ASME Paper No. 92-GT-325.
47.
Roumeliotis
,
I.
, and
Mathioudakis
,
K.
,
2006
, “
Evaluation of Interstage Water Injection Effect on Compressor and Engine Performance
,”
ASME J. Eng. Gas Turbines Power
,
128
(
4
), pp.
849
856
.10.1115/1.2135823
48.
Robbins
,
W. H.
, and
Dugan
,
J. F.
,
1965
,
Prediction of Off Design Performance of Multistage Compressors
,
I. H.
Jonsen
and
R. O.
Bullock
, eds.,
NASA
,
Washington, DC
.
49.
Day
,
I.
,
Freeman
,
C.
, and
Williams
,
J.
,
2005
, “
Rain Ingestion in Axial Flow Compressor at Part Speed
,”
ASME J. Turbomach.
,
130
(
1
), p.
011024
.10.1115/1.2366511
50.
Roumeliotis
,
I.
, and
Mathioudakis
,
K.
,
2007
, “
Water Injection Effects on Compressor Stage Operation
,”
ASME J. Eng. Gas Turbines Power
,
129
(
3
), pp.
778
798
.10.1115/1.2718223
51.
Williams
,
J.
,
2008
, “
Further Effects of Water Ingestion on Axial Flow Compressors and Aeroengines at Part Load
,”
ASME
Paper No GT2008-50620.10.1115/GT2008-50620
52.
Nikolaidis
,
T.
, and
Pilidis
,
P.
,
2014
, “
The Effect of Water Ingestion on an Axial Flow Compressor Performance
,”
Proc. Inst. Mech. Eng., Part G
,
228
(3), pp. 411–423.10.1177/0954410012474421
53.
Luo
,
M.
,
Zheng
,
Q.
,
Sun
,
L.
,
Deng
,
Q.
,
Li
,
S.
,
Liu
,
C.
, and
Bhargava
,
R.
,
2011
, “
The Numerical Simulation of Inlet Fogging Effects on the Stable Range of a Transonic Compressor Stage
,”
ASME
Paper No. GT2011-46124.10.1115/GT2011-46124
54.
Mathioudakis
,
K.
, and
Stamatis
,
A.
,
1994
, “
Compressor Fault Identification From Overall Performance Data Based on Adaptive Stage Stacking
,”
ASME J. Eng. Gas Turbines Power
,
116
(
1
), pp.
156
164
.10.1115/1.2906785
55.
Aretakis
,
N.
,
Roumeliotis
,
I.
, and
Mathioudakis
,
K.
,
2011
, “
Performance Model “Zooming” For In-Depth Component Fault Diagnosis
,”
ASME J. Eng. Gas Turbines Power
,
133
(
3
), p.
031602
.10.1115/1.4002042
56.
Roumeliotis
,
I.
, and
Mathioudakis
,
K.
,
2007
, “
Experimental Analysis of Wet Compression in Axial Compressor Stage
,”
7th European Turbomachinery Conference
,
Athens, Greece
, Mar. 5–9, Paper No. 122.
57.
Roumeliotis
,
I.
, and
Mathioudakis
,
K.
,
2010
, “
Evaluation of Water Injection Effect on Compressor and Engine Performance and Operability
,”
Appl. Energy
,
87
(
4
), pp.
1207
1216
.10.1016/j.apenergy.2009.04.039
58.
Lecheler
,
S.
, and
Hoffman
,
J.
,
2003
, “
The Power of Water in Gas Turbines: ALSTOM's Experience With Air Inlet Cooling
,”
PowerGen 2003
,
São Paolo, Brazil
, Nov. 11–13.
59.
Di Martino
,
P.
,
Cinque
,
G.
,
Terlizzi
,
A.
,
Gaudino
,
F.
, and
Santoriello
,
A.
,
2010
, “
Numerical Models for Simulation of Water Ingestion in Aeronautical Combustors
,”
Processes and Technologies for Sustainable Energy
,
Ischia, Italy
, June 27–30.10.4450/ptse2010.P2.14
60.
Proosis
, 2014, “EcosimPro/PROOSIS System Modelling and Simulation Software,” Empresarios Agrupados Internacional, Madrid, Spain, http://www.proosis.com/
61.
Alexiou
,
A.
,
Baalbergen
,
E. H.
,
Kogenhop
,
O.
,
Mathioudakis
,
K.
, and
Arendsen
,
P.
,
2007
, “
Advanced Capabilities for Gas Turbine Engine Performance Simulations
,”
ASME
Paper No. GT-2007-27086.10.1115/GT2007-27086
62.
Pilet
,
J.
,
Lecordix
,
J.-L.
,
Garcia-Rosa
,
N.
,
Barènes
,
R.
, and
Lavergne
,
G.
,
2011
, “
Towards a Fully Coupled Component Zooming Approach in Engine Performance Simulation
,”
ASME
Paper No. GT2011-46320.10.1115/GT2011-46320
63.
Alexiou
,
A.
, and
Tsalavoutas
,
A.
,
2011
,
Introduction to Gas Turbine Modelling With PROOSIS
, 1st ed.,
Empresarios Agrupados Internacional (EAI) S.A.
,
Madrid.
64.
CRESCENDO Consortium,
2012
, “
Capabilities for Setting Up a Model for the Detailed Design Phase and Their Contribution to Demonstrations
,” CRESCENDO Deliverable Report D.3.3.5, Project No. FP7-234344.
65.
Mathioudakis
,
K.
,
2002
, “
Analysis of the Effects of Water Injection on the Performance of a Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
124
(
3
), pp.
489
495
.10.1115/1.1451755
You do not currently have access to this content.