In this article, we describe the use of proper orthogonal decomposition (POD) to investigate how the dominant wake structures of a bluff-body-stabilized turbulent premixed flame are affected by the heat released by the flame itself. The investigation uses a validated large eddy simulation (LES) to simulate the dynamics of the bluff-body's wake (Blanchard et al., 2014, “Simulating Bluff-Body Flameholders: On the Use of Proper Orthogonal Decomposition for Wake Dynamics Validation,” ASME J. Eng. Gas Turbines Power, 136(12), p. 122603; Blanchard et al., 2014, “Simulating Bluff-Body Flameholders: On the Use of Proper Orthogonal Decomposition for Combustion Dynamics Validation,” ASME J. Eng. Gas Turbines Power, 136(12), p. 121504). The numerical simulations allow the effect of heat release, shown as the ratio of the burned to unburned temperatures, to be varied independently from the Damköhler number. Five simulations are reported with varying fractions of the heat release ranging from 0% to 100% of the value of the baseline experiment. The results indicate similar trends reported qualitatively by others, but by using POD to isolate the dominant heat release modes of each simulation, the decomposed data can clearly show how the previously reported flow structures transition from asymmetric shedding in the case of zero heat-release to a much weaker, but fully symmetric shedding mode in the case of full heat release with a much more elongated and stable wake.

References

1.
Blanchard
,
R. P.
,
Wing
,
N.
,
Lowe
,
K. T.
, and
Uri
,
V.
,
2014
, “
Simulating Bluff-Body Flameholders: On the Use of Proper Orthogonal Decomposition for Wake Dynamics Validation
,”
ASME J. Eng. Gas Turbines Power
,
136
(
12
), p.
122603
.
2.
Blanchard
,
R. P.
,
Andrew
,
J. W.
,
Lin
,
M.
, and
Wing
,
N.
,
2014
, “
Simulating Bluff-Body Flameholders: On the Use of Proper Orthogonal Decomposition for Combustion Dynamics Validation
,”
ASME J. Eng. Gas Turbines Power
,
136
(
12
), p.
121504
.
3.
Macquisten
,
M. A.
,
Dowling
,
A. P.
, and
Street
,
T.
,
1993
, “
Low Frequency Combustion Oscillations in a Model Afterburner
,”
Combust. Flame
,
94
(
3
), pp.
253
264
.
4.
Giacomazzi
,
E.
,
Battaglia
,
V.
, and
Bruno
,
C.
,
2004
, “
The Coupling of Turbulence and Chemistry in a Premixed Bluff-Body Flame as Studied by LES
,”
Combust. Flame
,
138
(
4
), pp.
320
335
.
5.
Shanbhogue
,
S. J.
,
Husain
,
S.
, and
Lieuwen
,
T.
,
2009
, “
Lean Blowoff of Bluff Body Stabilized Flames: Scaling and Dynamics
,”
Prog. Energy Combust. Sci.
,
35
(
1
), pp.
98
120
.
6.
Cocks
,
P. A. T.
,
Vaidyanathan
,
S.
, and
Marios
,
C. S.
,
2013
, “
Is LES of Reacting Flows Predictive? Part 1: Impact of Numerics
,”
AIAA
Paper No. 2013-0170.
7.
Giezendanner
,
R.
,
Keck
,
O.
,
Weigand
,
P.
,
Meier
,
W.
,
Meier
,
U.
,
Stricker
,
W.
, and
Aigner
,
M.
,
2003
, “
Periodic Combustion Instabilities in a Swirl Burner Studied by Phase-Locked Planar Laser-Induced Fluorescence
,”
Combust. Sci. Technol.
,
175
(
4
), pp.
721
741
.
8.
Pearson
,
K.
,
1901
, “
On Lines and Planes of Closest Fit to Systems of Points in Space
,”
Philos. Mag.
,
2
(
6
), pp.
559
572
.
9.
Lumley
,
J. L.
,
1967
, “
The Structure of Inhomogeneous Turbulent Flows
,”
Atmospheric Turbulence and Radio Wave Propagation
, A. M. Yaglom and V. I. Tatarsky, eds., Nauka, Moscow, pp.
166
178
.
10.
Gergen
,
I.
, and
Harmanescu
,
M.
,
2012
, “
Application of Principal Component Analysis in the Pollution Assessment With Heavy Metals of Vegetable Food Chain in the Old Mining Areas
,”
Chem. Cent. J.
,
6
(
1
), pp.
156
169
.
11.
Smith
,
T. R.
,
Moehlis
,
J.
, and
Holmes
,
P.
,
2005
, “
Low-Dimensional Modelling of Turbulence Using the Proper Orthogonal Decomposition: A Tutorial
,”
Nonlinear Dyn.
,
41
(
1–3
), pp.
275
307
.
12.
Sirovich
,
L.
, and
Kirby
,
M.
,
1987
, “
Low-Dimensional Procedure for the Characterization of Human Faces
,”
J. Opt. Soc. Am. A
,
4
(
3
), pp.
519
524
.
13.
Hsieh
,
T.-H.
,
Chen
,
J.-J.
,
Chen
,
L.-H.
,
Chiang
,
P.-T.
, and
Lee
,
H.-Y.
,
2011
, “
Time-Course Gait Analysis of Hemiparkinsonian Rats Following 6-Hydroxydopamine Lesion
,”
Behav. Brain Res.
,
222
(
1
), pp.
1
9
.
14.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
25
(1), pp.
539
575
.
15.
Fukunaga
,
K.
,
1990
,
Introduction to Statistical Pattern Recognition
, 2nd ed., Academic Press, San Diego, CA, p.
592
.
16.
Moin
,
P.
, and
Moser
,
R. D.
,
2006
, “
Characteristic-Eddy Decomposition of Turbulence in a Channel
,”
J. Fluid Mech.
,
200
(1), pp.
471
509
.
17.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures
,”
Q. Appl. Math.
,
45
(
3
), pp.
561
587
.
18.
Duwig
,
C.
, and
Iudiciani
,
P.
,
2009
, “
Extended Proper Orthogonal Decomposition for Analysis of Unsteady Flames
,”
Flow Turbul. Combust.
,
84
(
1
), pp.
25
47
.
19.
Böhm
,
B.
,
Brübach
,
J.
,
Ertem
,
C.
, and
Dreizler
,
A.
,
2008
, “
Experiments for Combustion-LES Validation
,”
Flow Turbul. Combust.
,
80
(
4
), pp.
507
529
.
20.
Kostka
,
S.
,
Roy
,
S.
,
Huelskamp
,
B. C.
,
Lynch
,
A. C.
,
Kiel
,
B. V.
, and
Gord
,
J. R.
,
2011
, “
Characterization of Bluff-Body-Flame Vortex Shedding Using Proper Orthogonal Decomposition
,”
AIAA
Paper No. 2011-599.
21.
Kostka
,
S.
,
Lynch
,
A. C.
,
Huelskamp
,
B. C.
,
Kiel
,
B. V.
,
Gord
,
J. R.
, and
Roy
,
S.
,
2012
, “
Characterization of Flame-Shedding Behavior Behind a Bluff-Body Using Proper Orthogonal Decomposition
,”
Combust. Flame
,
159
(
9
), pp.
2872
2882
.
22.
Ranalli
,
J. A.
, and
Brien
,
W. F. O.
,
2009
, “
Spatially Resolved Analysis of Flame Dynamics for the Prediction of Thermoacoustic Combustion Instabilities
,” Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
23.
Haber
,
L. C.
,
2000
, “
An Investigation Into the Origin, Measurement and Application of Chemiluminescent Light Emissions From Premixed Flames
,” Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg VA.
24.
Wickersham
,
A. J.
,
Li
,
X.
, and
Ma
,
L.
,
2014
, “
Comparison of Fourier, Principal Component and Wavelet Analyses for High Speed Flame Measurements
,”
Comput. Phys. Commun.
,
185
(4), pp. 1237–1245.
25.
Wickersham
,
A. J.
,
Li
,
X.
, and
Ma
,
L.
,
2014
, “
Comparison of Fourier, Principal Component and Wavelet Analyses for High Speed Flame Measurements
,”
Comput. Phys. Commun.
,
185
(
4
), pp.
1237
1245
.
26.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.
27.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
,
3
(
7
), pp.
1760
1765
.
28.
Lilly
,
D. K.
,
1992
, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids A
,
4
(
3
), pp.
633
635
.
29.
Butler
,
T. D.
, and
O'Rourke
,
P. J.
,
1977
, “
A Numerical Method for Two Dimensional Unsteady Reacting Flows
,”
Symp. (Int.) Combust.
,
16(1)
, pp.
1503
1515
.
30.
Selle
,
L.
,
2004
, “
Compressible Large Eddy Simulation of Turbulent Combustion in Complex Geometry on Unstructured Meshes
,”
Combust. Flame
,
137
(
4
) pp.
489
505
.
31.
Poinsot
,
T.
, and
Veynante
,
D.
,
2005
,
Theoretical and Numerical Combustion
, R.T. Edwards, Philadelphia PA.
32.
Huang
,
Y.
, and
Yang
,
V.
,
2009
, “
Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion
,”
Prog. Energy Combust. Sci.
,
35
(
4
), pp.
293
364
.
33.
Zimont
,
V.
,
Polifke
,
W.
,
Bettelini
,
M.
, and
Weisenstein
,
W.
,
1998
, “
An Efficient Computational Model for Premixed Turbulent Combustion at High Reynolds Numbers Based on a Turbulent Flame Speed Closure
,”
ASME J. Eng. Gas Turbines Power
,
120
(
3
), pp.
526
532
.
34.
Zimont
,
V.
,
Biagioli
,
F.
, and
Syed
,
K. J.
,
2001
, “
Modelling Turbulent Premixed Combustion in the Intermediate Steady Propagation Regime
,”
Prog. Comput. Fluid Dyn.
,
1
(
1
), pp.
14
28
.
35.
Lamoureux
,
N.
,
Djebaïli-Chaumeix
,
N.
, and
Paillard
,
C.-E.
,
2003
, “
Laminar Flame Velocity Determination for H2–Air–He–CO2 Mixtures Using the Spherical Bomb Method
,”
Exp. Therm. Fluid Sci.
,
27
(
4
), pp.
385
393
.
You do not currently have access to this content.