The focus of this paper is on the part load performance of a small scale (100 kWe) combined heat and power (CHP) plant fired by natural gas (NG) and solid biomass to serve a residential energy demand. The plant is based on a modified regenerative microgas turbine (MGT), where compressed air exiting from recuperator is externally heated by the hot gases produced in a biomass furnace; then the air is conveyed to combustion chamber where a conventional internal combustion with NG takes place, reaching the maximum cycle temperature allowed by the turbine blades. The hot gas expands in the turbine and then feeds the recuperator, while the biomass combustion flue gases are used for preheating the combustion air that feeds the furnace. The part load efficiency is examined considering a single shaft layout of the gas turbine and variable speed regulation. In this layout, the turbine shaft is connected to a high speed electric generator and a frequency converter is used to adjust the frequency of the produced electric power. The results show that the variable rotational speed operation allows high the part load efficiency, mainly due to maximum cycle temperature that can be kept about constant. Different biomass/NG energy input ratios are also modeled, in order to assess the trade-offs between: (i) lower energy conversion efficiency and higher investment cost when increasing the biomass input rate and (ii) higher primary energy savings (PESs) and revenues from feed-in tariff available for biomass electricity fed into the grid. The strategies of baseload (BL), heat driven (HD), and electricity driven (ED) plant operation are compared, for an aggregate of residential end-users in cold, average, and mild climate conditions.

References

1.
European Parliament, 2009, “Decision 406/2009/EC of the European Parliament and of the Council of 23 Apr. 2009
,” European Union, Brussels, Belgium.
2.
European Parliament, 2009, “Directive 2009/2028/EC of the European Parliament and of the Council of 23 Apr. 2009
,” European Union, Brussels, Belgium.
3.
Franco
,
A.
, and
Giannini
,
N.
,
2005
, “
Perspectives for the Use of Biomass as Fuel in Combined Cycle Power Plants
,”
Int. J. Therm. Sci.
,
44
(
2
), pp.
163
177
.
4.
Pantaleo
,
A.
,
Camporeale
,
S.
, and
Shah
,
N.
,
2013
, “
Thermo-Economic Assessment of Externally Fired Micro Gas Turbine Fired by Natural Gas and Biomass: Applications in Italy
,”
Energy Convers. Manage.
,
75
(
11
), pp.
202
213
.
5.
Fortunato
,
B.
,
Camporeale
,
S. M.
, and
Torresi
,
M.
,
2013
, “
A Gas-Steam Combined Cycle Powered by Syngas Derived From Biomass
,”
Procedia Comput. Sci.
,
19
, pp.
736
745
.
6.
Pantaleo
,
A.
,
Shah
,
N.
, and
Keirstead
,
J.
,
2013
, “
Bioenergy and Other Renewables in Urban Energy Systems
,”
Urban Energy Systems—An Integrated Approach
,
J.
Keirstead
, and
N.
Shah
, eds.,
Routledge
,
New York
.
7.
Sanaye
,
S.
, and
Ardali
,
M. R.
,
2009
, “
Estimating the Power and Number of Microturbines in Small-Scale Combined Heat and Power Systems
,”
Appl. Energy
,
86
(
6
), pp.
895
903
.
8.
Al-Sulaiman
,
F. A.
,
Dincer
,
I.
, and
Hamdullahpur
,
F.
,
2013
, “
Thermoeconomic Optimization of Three Trigeneration Systems Using Organic Rankine Cycles: Part I—Formulations
,”
Energy Convers. Manage.
,
69
(
5
), pp.
199
208
.
9.
Galanti
,
L.
, and
Massardo
,
A. F.
,
2010
, “
Thermoeconomic Analysis of Micro Gas Turbine Design in the Range 25-500 kWe
,”
ASME
Paper No. GT2010-22351.
10.
Ferreira
,
A. C. M.
,
Nunes
,
M. L.
,
Teixeira
,
S. F. C. F.
,
Leão
,
C. P.
,
Silva
,
Â. M.
,
Teixeira
,
J. C. F.
, and
Martins
,
L. S. B.
,
2012
, “
An Economic Perspective on the Optimisation of a Small-Scale Cogeneration System for the Portuguese Scenario
,”
Energy
,
45
(
1
), pp.
436
444
.
11.
Pantaleo
,
A.
,
Candelise
,
C.
,
Bauen
,
A.
, and
Shah
,
N.
,
2014
, “
ESCO Business Models for Biomass Heating and CHP: Case Studies in Italy
,”
Renewable Sustainable Energy Rev.
,
30
(Feb.), pp.
237
253
.
12.
Ministry Decree 5-09-2011 on Incentives for High Efficiency Cogeneration in Italy (in Italian)
.
13.
Ministry Decree 6-07-2012 on the Reform of the Supporting Mechanism for Renewable Electricity in Italy (in Italian).
14.
Hamilton
,
S. L.
,
2003
,
The Handbook of Microturbine Generators
,
PennWell
,
Tulsa, OK
.
15.
Martelli
,
F.
,
Riccio
,
G.
,
Maltagliati
,
S.
, and
Chiaramonti
,
D.
,
2000
, “
Technical Study and Environmental Impact of an External Fired Gas Turbine Power Plant Fed by Solid Fuel
,”
1st World Conference of Biomass
,
Sevilla
, Spain, June 5–9, pp.
878
885
.
16.
Obernberger
,
I.
,
1998
, “
Decentralized Biomass Combustion: State of the Art and Future Development
,”
Biomass Bioenergy
,
14
(
1
), pp.
33
57
.
17.
Riccio
,
G.
, and
Chiaramonti
,
D.
,
2009
, “
Design and Simulation of a Small Polygeneration Plant Cofiring Biomass and Natural Gas in a Dual Combustion Micro Gas Turbine (BIO_MGT)
,”
Biomass Bioenergy
,
33
(
11
), pp.
1520
1531
.
18.
Yan
,
J.
, and
Eidensten
,
L.
,
2000
, “
Status and Perspective of Externally Fired Gas Turbines
,”
J. Propul. Power
,
16
(
4
), pp.
572
576
.
19.
Al-attab
,
K. A.
, and
Zainal
,
Z. A.
,
2010
, “
Turbine Startup Methods for Externally Fired Micro Gas Turbine (EFMGT) System Using Biomass Fuels
,”
Appl. Energy
,
87
(
4
), pp.
1336
1341
.
20.
Ferreira
,
S. B.
, and
Pilidis
,
P.
,
2001
, “
Comparison of Externally Fired and Internal Combustion Gas Turbines Using Biomass Fuel
,”
ASME J. Energy Res. Technol.
,
123
(
4
), pp.
291
296
.
21.
Rossetti
,
A.
,
Armanasco
,
F.
, and
Lucchini
,
A.
,
2011
, “
Analisi tecnico economica di impianti turbogas di piccola–media taglia con combustione di biomassa e combustibili fossili
,” Report Ricerca sul Sistema Energetico – RSE S.p.A, Italy, available at: http://www.rse-web.it/documenti/documento/314716 (in Italian)
22.
Knoef
,
H.
,
1998
, “
The Indirectly Fired Gas Turbine for Rural Electricity Production From Biomass
,” Project Brochure and Reports, Contract No. FAIR-CT95–0291.
23.
Soltani
,
S.
,
Mahmoudi
,
S. M. S.
,
Yari
,
M.
, and
Rosen
,
M. A.
,
2013
, “
Thermodynamic Analyses of an Externally Fired Gas Turbine Combined Cycle Integrated With a Biomass Gasification Plant
,”
Energy Convers. Manage.
,
70
(
6
), pp.
107
115
.
24.
Stein-Brzozowska
,
G.
,
Flórez
,
D. M.
,
Maier
,
J.
, and
Scheffknecht
,
G.
,
2013
, “
Nickel-Base Superalloys for Ultra-Supercritical Coal-Fired Power Plants: Fireside Corrosion, Laboratory Studies and Power Plant Exposures
,”
Fuel
,
108
(
6
), pp.
521
533
.
25.
Aquaro
,
D.
, and
Pieve
,
M.
,
2007
, “
High Temperature Heat Exchangers for Power Plants: Performance of Advanced Metallic Recuperators
,”
Appl. Therm. Eng.
,
27
(
2–3
), pp.
389
400
.
26.
Evans
,
R. L.
, and
Zaradic
,
A. M.
,
1996
, “
Optimization of a Wood-Waste-Fuelled Indirectly Fired Gas Turbine Cogeneration Plant
,”
Bioresour. Technol.
,
57
(
2
), pp.
117
126
.
27.
Savola
,
T.
,
Tveit
,
T.-M.
, and
Laukkanen
,
T.
,
2005
, “Biofuel Indirectly Fired Microturbine—State of the Art,” Laboratory of Energy Engineering and Environmental Protection, Helsinki University of Technology (TKK), Espoo, Finland.
28.
Cocco
,
D.
,
Deiana
,
P.
, and
Cau
,
G.
,
2006
, “
Performance Evaluation of Small Size Externally Fired Gas Turbine (EFGT) Power Plants Integrated With Direct Biomass Dryers
,”
Energy
,
31
(
10–11
), pp.
1459
1471
.
29.
Kautz
,
M.
, and
Hansen
,
U.
,
2007
, “
The Externally-Fired Gas-Turbine (EFGT-Cycle) for Decentralized Use of Biomass
,”
Appl. Energy
,
84
(
7–8
), pp.
795
805
.
30.
Riccio
,
G.
,
Martelli
,
F.
, and
Maltagliati
,
S.
,
2000
, “
Study of an External Fired Gas Turbine Power Plant Fed by Solid Fuel
,”
ASME
Paper No. 2000-GT-0015.
31.
Haeseldonckx
,
D.
,
Peeters
,
L.
,
Helsen
,
L.
, and
D'haeseleer
,
W.
,
2007
, “
The Impact of Thermal Storage on the Operational Behaviour of Residential CHP Facilities and the Overall CO2 Emissions
,”
Renewable Sustainable Energy Rev.
,
11
(
6
), pp.
1227
1243
.
32.
Kong
,
X. Q.
,
Wang
,
R. Z.
, and
Huang
,
X. H.
,
2005
, “
Energy Optimization Model for a CCHP System With Available Gas Turbines
,”
Appl. Therm. Eng.
,
25
(
2–3
), pp.
377
391
.
33.
Yokoyama
,
R.
,
Ito
,
K.
, and
Matsumoto
,
Y.
,
1994
, “
Optimal Sizing of a Gas Turbine Cogeneration Plant in Consideration of Its Operational Strategy
,”
ASME J. Eng. Gas Turbines Power
,
116
(
1
), pp.
32
38
.
34.
Kim
,
M.
,
Sohn
,
Y. J.
,
Lee
,
W. Y.
, and
Kim
,
C. S.
,
2008
, “
Fuzzy Control Based Engine Sizing Optimization for a Fuel Cell/Battery Hybrid Mini-Bus
,”
J. Power Sources
,
178
(2), pp.
706
710
.
35.
Shaneb
,
O. A.
,
Taylor
,
P. C.
, and
Coates
,
G.
,
2012
, “
Real Time Operation of μCHP Systems Using Fuzzy Logic
,”
Energy Build.
,
55
(
12
), pp.
141
150
.
36.
Yang
,
H.
,
Zhou
,
W.
,
Lu
,
L.
, and
Fang
,
Z.
,
2008
, “
Optimal Sizing Method for Stand-Alone Hybrid Solar-Wind System With LPSP Technology by Using Genetic Algorithm
,”
Sol. Energy
,
82
(4), pp.
354
367
.
37.
Cho
,
W.
,
Lee
,
J.
,
Lee
,
K. S.
,
Son
,
S.
, and
Jang
,
D.
,
2013
, “
Capacity Estimation for a CHP Unit
,”
3rd International Conference on Microgeneration and Related Technologies (Microgen III), Naples
, Apr. 15–17.
38.
Hawkes
,
A.
, and
Leach
,
M.
,
2007
, “
Cost-Effective Operating Strategy for Residential Micro-Combined Heat and Power
,”
Energy
,
32
(
5
), pp.
711
723
.
39.
Gamou
,
S.
, and
Yokoyama
,
R. K.
,
2002
, “
Optimal Unit Sizing of Cogeneration Systems in Consideration of Uncertain Energy Demands as Continuous Random Variables
,”
Energy Convers. Manage.
,
43
(
9–12
), pp.
1349
1361
.
40.
Ren
,
H.
,
Gao
,
W.
, and
Ruan
,
Y.
,
2008
, “
Optimal Sizing for Residential CHP System
,”
Appl. Therm. Eng.
,
28
(
5–6
), pp.
514
523
.
41.
Sanaye
,
S.
,
Meybodi
,
M. A.
, and
Shokrollahi
,
S.
,
2008
, “
Selecting the Prime Movers and Nominal Powers in Combined Heat and Power Systems
,”
Appl. Therm. Eng.
,
28
(
10
), pp.
1177
1188
.
42.
Chicco
,
G.
, and
Mancarella
,
P.
,
2009
, “
Matrix Modelling of Small-Scale Trigeneration Systems and Application to Operational Optimization
,”
Energy
,
34
(
3
), pp.
261
73
.
43.
Cho
,
H.
,
Mago
,
P. J.
,
Luck
,
R.
, and
Chamra
,
L. M.
,
2009
, “
Evaluation of CCHP Systems Performance Based on Operational Cost, Primary Energy Consumption, and Carbon Dioxide Emission by Utilizing an Optimal Operation Scheme
,”
Appl. Energy
,
86
(
12
), pp.
2540
2549
.
44.
Mago
,
P. J.
, and
Chamra
,
L. M.
,
2009
, “
Analysis and Optimization of CCHP Systems Based on Energy, Economical, and Environmental Considerations
,”
Energy Build.
,
41
(
10
), pp.
1099
1106
.
45.
Ren
,
H.
,
Zhou
,
W.
,
Nakagami
,
K.
, and
Gao
,
W.
,
2010
, “
Integrated Design and Evaluation of Biomass Energy System Taking Into Consideration Demand Side Characteristics
,”
Energy
,
35
(
5
), pp.
2210
2222
.
46.
Hawkes
,
A.
, and
Leach
,
M.
,
2005
, “
Solid Oxide Fuel Cell Systems for Residential Micro-Combined Heat and Power in the UK: Key Economic Drivers
,”
J. Power Sources
,
149
(
9
), pp.
72
83
.
47.
Entchev
,
E.
,
2003
, “
Residential Fuel Cell Energy Systems Performance Optimization Using ‘Soft Computing’ Techniques
,”
J. Power Sources
,
118
(
1–2
), pp.
212
227
.
48.
Shaneb
,
O. A.
,
Taylor
,
P. C.
, and
Coates
,
G.
,
2012
, “
Optimal Online Operation of Residential μCHP Systems Using Linear Programming
,”
Energy Build.
,
44
(
1
), pp.
17
25
.
49.
Ren
,
H.
, and
Gao
,
W.
,
2010
, “
Economic and Environmental Evaluation of Micro CHP Systems With Different Operating Modes for Residential Buildings in Japan
,”
Energy Build.
,
42
(
6
), pp.
853
861
.
50.
Turbec
,
2002
, “Model T100 Microturbine System, D12451 Technical Description,” Turbec AB, Malmo, Sweden.
51.
Bianchi, E., 2004, “Microturbina Turbec T100 CHP,” Italian Federation for Rational Use of Energy (FIRE), Rome, accessed Nov. 1, 2013, http://www.fire-italia.it/convegni/milanostelline2004/st04_bianchi.pdf
52.
Hohloch
,
M.
,
Zanger
,
J.
,
Widenhorn
,
A.
, and
Aigner
,
M.
,
2010
, “
Experimental Characterization of a Micro Gas Turbine Test Rig
,”
ASME
Paper No. GT2010-22799.
53.
De Paepe
,
W.
,
Delattin
,
F.
,
Bram
,
S.
,
Contino
,
F.
, and
De Ruyck
,
J.
,
2013
, “
A Study on the Performance of Steam Injection in a Typical Micro Gas Turbine
,”
ASME
Paper No. GT2013-94569.
54.
Larosa
,
L.
,
Ferrari
,
M. L.
,
Magistri
,
L.
, and
Massardo
,
A. F.
,
2013
, “
SOFC/MGT Coupling: Different Options With Standard Boosters
,”
ASME
Paper No. GT2013-94072.
55.
Energy Nexus Group, 2002, “Technology Characterization–Microturbines,”
Environmental Protection Agency, Washington, DC, http://stsm.ir/resources/10301-09101387135242Technology%20Characterization%20Microturbines.pdf
56.
Greenhouse Gas Technology Center, 2003, “Environmental Technology Verification Report: Combined Heat and Power at a Commercial Supermarket—Capstone 60 kW Microturbine CHP System,” Southern Research Institute, Research Triangle Park, NC, Report No. SRI/USEPA-GHG-VR-27, accessed Dec. 31, 2013, http://www.microturbine.com/_docs/EPA-C60testreport.pdf
57.
Pantaleo
,
A.
,
Camporeale
,
S.
, and
Shah
,
N.
,
2014
, “Natural Gas—Biomass Dual Fuelled Microturbines: Comparison of Operating Strategies in the Italian Residential Sector,”
Appl. Thermal Eng.
,
71
(
2
), pp.
686
696
.
59.
REF.
,
2011
, “
L'incentivazione delle fonti rinnovabili nel settore del riscaldamento-raffreddamento
,” Federazione Italiana Produttori di Energia da Fonti Rinnovabili, Milano, Italy, http://www.fiper.it/it/biblioteca.html (in Italian).
You do not currently have access to this content.