An efficient analysis method is suggested to investigate the frequency characteristics and stability of asymmetric anisotropic rotor-bearing systems. Modifications are made to incorporate the effect of stator asymmetry into an existing three-dimensional (3D) solid finite element procedure developed for rotors with symmetric supports. The reduced ordered linear differential equations with periodic coefficients of the asymmetric anisotropic rotor model are established in the rotating frame. The frequency characteristics and stability of the obtained periodic time-varying coefficient differential equations are investigated based on Floquet theory and Hill's method. Numerical examples and experimental studies are presented to validate the effectiveness of the presented method.

References

1.
Lee
,
C. W.
,
1991
, “
A Complex Modal Testing Theory for Rotating Machinery
,”
Mech. Syst. Signal Process.
,
5
(
2
), pp.
119
137
.10.1016/0888-3270(91)90019-2
2.
Floquet
,
G.
,
1883
, “
Sur les equations lineaires a coefficients periodiques
,”
Ann. Sci. Ec. Norm. Super.
,
12
, pp.
47
88
.http://eudml.org/doc/80895
3.
Hill
,
G. W.
,
1886
, “
On the Part of the Motion of the Lunar Perigee Which is a Function of the Mean Motions of the Sun and Moon
,”
Acta Math.
,
8
(
1
), pp.
1
36
.10.1007/BF02417081
4.
Black
,
H. F.
,
1969
, “
Parametrically Excited Lateral Vibrations of an Asymmetric Slender Shaft in Asymmetrically Flexible Bearings
,”
Proc. Inst. Mech. Eng., Part C
,
11
(
1
), pp.
57
67
.10.1243/JMES_JOUR_1969_011_008_02
5.
Yamamoto
,
T.
,
Ota
,
H.
, and
Kono
,
K.
,
1968
, “
On the Unstable Vibrations of a Shaft With Unsymmetrical Stiffness Carrying an Unsymmetrical Rotor
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
313
321
.10.1115/1.3601197
6.
Gladwell
,
G. M. L.
, and
Stammers
,
C. W.
,
1966
, “
On the Stability of an Unsymmetrical Rigid Rotor Supported in Unsymmetrical Bearings
,”
J. Sound Vib.
,
3
(
3
), pp.
221
232
.10.1016/0022-460X(66)90091-5
7.
Han
,
Q. K.
, and
Chu
,
F. L.
,
2012
, “
Parametric Instability of Two-Disk Rotor With Two Inertia Asymmetries
,”
Int. J. Struct. Stab. Dyn.
,
12
(
2
), pp.
251
284
.10.1142/S0219455412500034
8.
Han
,
Q.
, and
Chu
,
F.
,
2013
, “
Parametric Instability of a Jeffcott Rotor With Rotationally Asymmetric Inertia and Transverse Crack
,”
Nonlinear Dyn.
,
73
(
1–2
), pp.
827
842
.10.1007/s11071-013-0835-6
9.
Genta
,
G.
,
1988
, “
Whirling of Unsymmetrical Rotors: A Finite Element Approach Based on Complex Coordinates
,”
J. Sound Vib.
,
124
(
1
), pp.
27
53
.10.1016/S0022-460X(88)81404-4
10.
Nandi
,
A.
, and
Neogy
,
S.
,
2005
, “
An Efficient Scheme for Stability Analysis of Finite Element Asymmetric Rotor Models in a Rotating Frame
,”
Finite Elem. Anal. Des.
,
41
(
14
), pp.
1343
1364
.10.1016/j.finel.2005.03.001
11.
Lee
,
C. W.
,
Han
,
D. J.
,
Suh
,
J. H.
, and
Hong
,
S. W.
,
2007
, “
Modal Analysis of Periodically Time-Varying Linear Rotor Systems
,”
J. Sound Vib.
,
303
(
3–5
), pp.
553
574
.10.1016/j.jsv.2007.01.041
12.
Lee
,
C. W.
,
Han
,
D. J.
, and
Hong
,
S. W.
,
2006
, “
Modal Analysis of Periodically Time-Varying Linear Rotor Systems Using Floquet Theory
,”
7th IFToMM Conference on Rotor Dynamics
, Vienna, Austria, Sept. 25–28, Paper No. 78.
13.
Lee
,
C. W.
,
Suh
,
J. H.
, and
Hong
,
S. W.
,
2004
, “
Modal Analysis of Rotor System Using Modulated Coordinates for Asymmetric Rotor System With Anisotropic Stator
,”
8th International Conference on Vibrations in Rotating Machinery
, Swansea, UK, Sept. 7–9, pp.
575
584
.
14.
Lazarus
,
A.
,
Prabel
,
B.
, and
Combescure
,
D.
,
2010
, “
A 3D Finite Element Model for the Vibration Analysis of Asymmetric Rotating Machines
,”
J. Sound Vib.
,
329
(
18
), pp.
3780
3797
.10.1016/j.jsv.2010.03.029
15.
Geradin
,
M.
, and
Kill
,
N.
,
1984
, “
A New Approach to Finite Element Modelling of Flexible Rotors
,”
Eng. Comput.
,
1
(
1
), pp.
52
64
.10.1108/eb023560
16.
Stephenson
,
R. W.
, and
Rouch
,
K. E.
,
1993
, “
Modeling Rotating Shafts Using Axisymmetric Solid Finite Elements With Matrix Reduction
,”
ASME J. Vib. Acoust.
,
115
(
4
), pp.
484
489
.10.1115/1.2930376
17.
Geradin
,
M.
, and
Kill
,
N.
,
1986
, “
A Three Dimensional Approach to Dynamic Analysis of Rotating Shaft Disc Flexible Systems
,”
2nd International Conference on Rotordynamics IFToMM
, Tokyo, Sept. 14–17, pp.
87
93
.
18.
Irretier
,
H.
,
Jacquet-Richardet
,
G.
, and
Reuter
,
F.
,
1999
, “
Numerical and Experimental Investigations of Coupling Effects in Anisotropic Elastic Rotors
,”
Int. J. Rotating Mach.
,
5
(
4
), pp.
263
271
.10.1155/S1023621X99000238
19.
Kim
,
K. T.
, and
Lee
,
C. W.
,
2012
, “
Dynamic Analysis of Asymmetric Bladed-Rotors Supported by Anisotropic Stator
,”
J. Sound Vib.
,
331
(
24
), pp.
5224
5246
.10.1016/j.jsv.2012.06.014
20.
Nandi
,
A.
,
2004
, “
Reduction of Finite Element Equations for a Rotor Model on Non-Isotropic Spring Support in a Rotating Frame
,”
Finite Elem. Anal. Des.
,
40
(
9
), pp.
935
952
.10.1016/S0168-874X(03)00121-5
21.
Genta
,
G.
,
2005
,
Dynamics of Rotating Systems
,
Springer
,
New York
, Chap. 9.
22.
Jacquet-Richardet
,
G.
,
Ferraris
,
G.
, and
Rieutord
,
P.
,
1996
, “
Frequencies and Modes of Rotating Flexible Bladed Disc-Shaft Assemblies: A Global Cyclic Symmetry Approach
,”
J. Sound Vib.
,
191
(
5
), pp.
901
915
.10.1006/jsvi.1996.0162
23.
Chatelet
,
E.
,
D'Ambrosio
,
F.
, and
Jacquet-Richardet
,
G.
,
2005
, “
Toward Global Modelling Approaches for Dynamic Analyses of Rotating Assemblies of Turbomachines
,”
J. Sound Vib.
,
282
(
1–2
), pp.
163
178
.10.1016/j.jsv.2004.02.035
24.
Boru
,
F. E.
,
2010
, “
Numerical and Experimental Response and Stability Investigations of Anisotropic Rotor-Bearing Systems
,” Ph.D., thesis, Kassel University, Kassel, Germany.
You do not currently have access to this content.