Modern large air Brayton gas turbines have compression ratios ranging from 15 to 40 resulting in compressor outlet temperatures ranging from 350 °C to 580 °C. Fluoride-salt-cooled, high-temperature reactors, molten salt reactors, and concentrating solar power can deliver heat at temperatures above these outlet temperatures. This article presents an approach to use these low-carbon energy sources with a reheat-air Brayton combined cycle (RACC) power conversion system that would use existing gas turbine technology modified to introduce external air heating and one or more stages of reheat, coupled to a heat recovery steam generator to produce bottoming power or process heat. Injection of fuel downstream of the last reheat stage is shown to enable the flexible production of additional peaking power. This article presents basic configuration options for RACC power conversion, two reference designs based upon existing Alstom and GE gas turbine compressors and performance of the reference designs under nominal ambient conditions. A companion article studies RACC start up, transients, and operation under off-nominal ambient conditions.

References

1.
MacPherson
,
H. G.
,
1985
, “
The Molten Salt Reactor Adventure
,”
Nucl. Sci. Eng.
,
90
, pp.
374
380
.
2.
Peterson
,
P. F.
,
2003
, “
Multiple-Reheat Brayton Cycles for Nuclear Power Conversion With Molten Coolant
,”
Nucl. Tech.
,
144
(
3
), pp.
279
288
.
3.
Peterson
,
P. F.
and
Haihua
,
Z.
,
2005
, “
A Flexible Baseline Design for the Advanced High Temperature Reactor Using Metallic Internals (AHTR-MI)
,”
International Congress on Advances in Nuclear Power Plants (ICAPP '06), Reno, NV
, June
4
8
.
4.
Greene
,
S. R.
,
2010
, “
Pre-Conceptual Design of a Fluoride- Salt-Cooled Small Modular Advanced High-Temperature Reactor (SmAHTR)
,”
Oak Ridge National Laboratory
, Oak Ridge, TN, Report No.
ORNL/TM-2010/199
, Fig. 8-1, p.
8
2
.10.2172/1008830
5.
Forsberg
,
C
.,
2009
, “
Economics of Meeting Peak Electricity Demand Using Hydrogen and Oxygen From Base-Load Nuclear or Off-Peak Electricity
,”
Nucl. Tech.
,
166
, pp.
18
26
.
6.
Andreades
,
C.
,
Dempsey
,
L.
and
Peterson
,
P.
, “
Reheat Air-Brayton Combined Cycle (RACC) Power Conversion Off-Nominal and Transient Performance
,”
ASME J. Eng. Gas Turb. Power
(submitted).
7.
Dostal
,
V.
,
Hejzlar
,
P.
and
Driscoll
,
M. J.
,
2006
, “
The Supercritical Carbon Dioxide Power Cycle: Comparison to Other Advanced Power Cycles
,” Nucl. Tech.,
154
(
3
), pp. 283–301.
8.
Eldrid
,
R.
,
Kaufman
,
L.
and
Marks
,
P.
,
2001
,
The 7FB: The Next Evolution of the F Gas Turbine
,
GE Power Systems
,
Schenectady, NY
.
9.
Ferraro
,
V.
,
Imineo
,
F.
, and
Marinelli
,
V.
,
2013
, “
An Improved Model to Evaluate Thermodynamic Solar Plants With Cylindrical Parabolic Collectors and Air Turbine Engines in Open Joule–Brayton Cycle
,”
Energy
,
53
(1), pp.
323
331
.10.1016/j.energy.2013.02.051
10.
Zhao
,
H.
, and
Peterson
,
P. F.
,
2007
, “
Advanced MED Using Waste Heat From Closed Gas Brayton Cycles
,”
Trans. ANS
,
96
, pp.
791
792
.
11.
Jeong
,
Y.
,
Saha
,
P.
, and
Kazimi
,
M.
,
2005
,
Attributes of a Nuclear-Assisted Gas Turbine Power Cycle
,
Nuclear Energy and Sustainability Program
,
Cambridge, MA
.
12.
Kemika,
2005
,
Material Safety Data Sheet: Natural Gas Feed
,
Air Liquide
,
Houston, TX
.
13.
Jones
,
C.
, and
Jacobs
III,
J. A.
,
2000
,
Economic and Technical Considerations for Combined-Cycle Performance-Enhancement Options
,
GE Power Systems
,
Schenectady, NY
.
14.
Chase
,
D.
, and
Kehoe
,
P.
,
2000
,
GE Combined-Combined Cycle Product Line and Performance
,
GE Power Systems
,
Schenectady, NY
.
15.
Franco
,
A.
, and
Casarosa
,
C.
,
2002
, “
On Some Perspectives for Increasing the Efficiency of Combined Cycle Power Plants
,”
Appl. Therm. Eng.
,
22
(13), pp.
1501
1518
.10.1016/S1359-4311(02)00053-4
16.
Wenguo Xiang
,
Y. C.
,
2007
, “
Performance Improvement of Combined Cycle Power Plant Based on the Optimization of the Bottom Cycle and Heat Recuperation
,”
J. Therm Sci.
,
16
(1), pp.
84
89
.10.1007/s11630-007-0084-4
17.
Gilli
,
P.
,
Fritz
,
K.
,
Lippitsch
,
J.
, and
Lurf
,
G.
,
1973
, “
Radial Flow Heat Exchanger
,” U.S. Patent No. 3,712, 370.
18.
Boyce
,
M. P.
,
2006
,
Gas Turbine Engineering Handbook
,
Gulf Professional Publishing
,
Burlington, MA
.
19.
Matta
,
R.
,
Mercer
,
G.
, and
Tuthill
,
R.
,
2000
,
Power Systems for the 21st Century—“H” Gas Turbine Combined Cycles
,
GE Power Systems
,
Schenectady, NY
.
20.
Kurz
,
R.
, and
Brun
,
K.
,
2000
, “
Gas Turbine Performance Map—What Makes the Map?
,” 29th Turbomachinery Symposium, Houston, TX, September 18–21.
21.
Meher-Homji
,
C. B.
, and
Gabriles
,
G. A.
,
1998
, “
Gas Turbine Blade Failures—Causes, Avoidance, and Troubleshooting.
,”
Twenty-Seventh Turbomachinery Symposium
, Houston, TX, September 22–24.
22.
Knowledge = Power
,” 2013, Thermoflow Inc., Southborough, MA, http://www.thermoflow.com
23.
Brooks
,
F. J.
,
2000
,
GE Gas Turbine Performance Characteristics
,
GE Power Systems
,
Schenectady, NY
.
24.
Lecheler
,
S.
, and
Hoffman
,
J.
,
2003
, “
The Power of Water in Gas Turbines: ALSTOM's Experience With Air Inlet Cooling
,” Power-Gen Latin America, Sao Paulo, Brazil, November 11–13.
You do not currently have access to this content.