Past research has shown that the combustion of low cetane fuels in compression ignition (CI) engines results in higher fuel conversion efficiencies. However, when high-cetane fuels such as diesel are substituted with low-cetane fuels such as gasoline, the engine operation tends to suffer from high carbon monoxide (CO) emissions at low loads and combustion noise at high loads. In this paper, we present a computational analysis of a light-duty CI engine operating on diesel, kerosene and gasoline. These three fuels cover a range of cetane numbers (CNs) from 46 for diesel to 25 for gasoline. Similar to experiments, the model predicted higher CO emissions at low load operation with gasoline. Predictions of in-cylinder details were utilized to understand differences in combustion characteristics of the three fuels. The in-cylinder mass contours and the evolution of model predicted in-cylinder mixture in Φ–T coordinates were then used to explain the emission trends. From the analysis, overmixing due to early single injection was identified as the reason for high CO emissions with low load gasoline low temperature combustion (LTC). Additional simulations were performed by introducing techniques like cetane enhancement, adding hot exhaust gas recirculation (EGR), and variation of the injection scheme. Their effects on low load gasoline LTC were studied. Finally, it is shown that use of a dual pulse injection scheme with hot EGR helped to reduce the CO emissions for low load gasoline LTC while maintaining low NOx emissions.
Computational Analysis of Combustion of High and Low Cetane Fuels in a Compression Ignition Engine
Contributed by the Combustion and Fuels Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received April 28, 2014; final manuscript received May 28, 2014; published online July 15, 2014. Editor: David Wisler. The United States Government retains, and by accepting the article for publication, the publisher acknowledges that the United States Government retains, a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States government purposes.
Kavuri, C., Singh, S., Rajan Krishnan, S., Kumar Srinivasan, K., and Ciatti, S. (July 15, 2014). "Computational Analysis of Combustion of High and Low Cetane Fuels in a Compression Ignition Engine." ASME. J. Eng. Gas Turbines Power. December 2014; 136(12): 121506. https://doi.org/10.1115/1.4027927
Download citation file: