Dual-fuel reactivity controlled compression ignition (RCCI) combustion has shown high thermal efficiency and superior controllability with low NOx and soot emissions. However, as in other low temperature combustion (LTC) strategies, the combustion control using low exhaust gas recirculation (EGR) or a high compression ratio at high load conditions has been a challenge. The objective of this work was to examine the efficacy of using dual direct injectors for combustion phasing control of high load RCCI combustion. The present computational work demonstrates that 21 bar gross indicated mean effective pressure (IMEP) RCCI is achievable using dual direct injection. The simulations were done using the KIVA3V-Release 2 code with a discrete multicomponent fuel evaporation model, coupled with sparse analytical Jacobian solver for describing the chemistry of the two fuels (iso-octane and n-heptane). In order to identify an optimum injection strategy a nondominated sorting genetic algorithm II (NSGA II), which is a multiobjective genetic algorithm, was used. The goal of the optimization was to find injection timings and mass splits among the multiple injections that simultaneously minimize the six objectives: soot, nitrogen oxide (NOx), carbon monoxide (CO), unburned hydrocarbon (UHC), indicated specific fuel consumption (ISFC), and ringing intensity. The simulations were performed for a 2.44 liter, heavy-duty engine with a 15:1 compression ratio. The speed was 1800 rev/min and the intake valve closure (IVC) conditions were maintained at 3.42 bar, 90 °C, and 46% EGR. The resulting optimum condition has 12.6 bar/deg peak pressure rise rate, 158 bar maximum pressure, and 48.7% gross indicated thermal efficiency. The NOx, CO, and soot emissions are very low.

References

1.
Bessonette
,
P. W.
,
Schleyer
,
C. H.
,
Duffy
,
K. P.
,
Hardy
,
W. L.
, and
Liechty
,
M.
,
2007
, “
Effects of Fuel Property Changes on Heavy-Duty HCCI Combustion
,”
SAE
Technical Paper No. 2007-01-0191. 10.4271/2007-01-0191
2.
Kokjohn
,
S.
,
Hanson
,
R.
,
Splitter
,
D.
, and
Reitz
,
R. D.
,
2011
, “
Fuel Reactivity Controlled Compression Ignition (RCCI): A Pathway to Controlled High-Efficiency Clean Combustion
,”
Int. J. Engine Res.
,
12
(3), pp.
209
226
.10.1177/1468087411401548
3.
Splitter
,
D.
,
Hanson
,
R.
,
Kokjohn
,
S.
, and
Reitz
,
R.
,
2011
, “
Reactivity Controlled Compression Ignition (RCCI) Heavy-Duty Engine Operation at Mid- and High-Loads With Conventional and Alternative Fuels
,”
SAE
Technical Paper No. 2011-01-0363. 10.4271/2011-01-0363
4.
Nieman
,
D. E.
,
Dempsey
,
A. B.
, and
Reitz
,
R. D.
,
2012
, “
Heavy-Duty RCCI Operation Using Natural Gas and Diesel
,”
SAE Int. J. Engines
,
5
, pp.
270
285
.10.4271/2012-01-0379
5.
Splitter
,
D.
,
Wissink
,
M.
,
Kokjohn
,
S.
, and
Reitz
,
R.
,
2012
, “
Effect of Compression Ratio and Piston Geometry on RCCI Load Limits and Efficiency
,”
SAE
Technical Paper No. 2012-01-0383. 10.4271/2012-01-0383
6.
Dempsey
,
A. B.
and
Reitz
,
R. D.
,
2011
, “
Computational Optimization of Reactivity Controlled Compression Ignition in a Heavy-Duty Engine With Ultra Low Compression Ratio
,”
SAE Int. J. Engines
,
4
, pp.
2222
2239
. 10.4271/2011-24-0015
7.
Eichmeier
,
J.
,
Wagner
,
U.
, and
Spicher
,
U.
,
2011
, “
Controlling Gasoline Low Temperature Combustion by Diesel Micro Pilot Injection
,”
ASME
Paper No. ICEF2011-60042. 10.1115/ICEF2011-60042
8.
Dec
,
J. E.
,
Yang
,
Y.
, and
Dronniou
,
N.
,
2012
, “
Improving Efficiency and Using E10 for Higher Loads in Boosted HCCI Engines
,”
SAE Int. J. Engines
,
5
, pp.
1009
1032
.10.4271/2012-01-1107
9.
Manente
,
V.
,
Johansson
,
B.
, and
Tunestal
,
P.
,
2009
, “
Partially Premixed Combustion at High Load Using Gasoline and Ethanol, a Comparison With Diesel
,”
SAE
International Technical Paper No. 2009-01-0944. 10.4271/2009-01-0944
10.
Manente
,
V.
,
Johansson
,
B.
, and
Cannella
,
W.
,
2011
, “
Gasoline Partially Premixed Combustion, the Future of Internal Combustion Engines?
,”
Int. J. Engine Res.
,
12
(3), pp.
194
208
.10.1177/1468087411402441
11.
Dempsey
,
A. B.
and
Reitz
,
R. D.
,
2011
, “
Computational Optimization of a Heavy-Duty Compression Ignition Engine Fueled With Conventional Gasoline
,”
SAE Int. J. Engines
,
4
, pp.
338
359
.10.4271/2011-01-0356
12.
Ra
,
Y.
,
Loeper
,
P.
,
Andrie
,
M.
,
Krieger
,
R.
,
Foster
,
D.
, and
Reitz
,
R.
,
2011
, “
Study of High Speed Gasoline Direct Injection Compression Ignition (GDICI) Engine Operation in the LTC Regime
,”
SAE Int. J. Engines
,
4
(1), pp.
1412
1430
.10.4271/2011-01-1182
13.
Das Adhikary
,
B.
,
Ra
,
Y.
,
Reitz
,
R.
, and
Ciatti
,
S.
,
2012
, “
Numerical Optimization of a Light-Duty Compression Ignition Engine Fuelled With Low-Octane Gasoline
,”
SAE
International Technical Paper No. 2012-01-1336.10.4271/2012-01-1336
14.
Amsden
,
A. A.
,
1999
, “
KIVA-3V, Release 2, Improvement to KIVA-3V
,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-13608-MS.
15.
Ra
,
Y.
and
Reitz
,
R. D.
,
2009
, “
A Vaporization Model for Discrete Multi-Component Fuel Sprays
,”
Int. J. Multiphase Flow
,
35
(2), pp.
101
117
.10.1016/j.ijmultiphaseflow.2008.10.006
16.
Ra
,
Y.
and
Reitz
,
R. D.
,
2008
, “
A Reduced Chemical Kinetic Model for IC Engine Combustion Simulations With Primary Reference Fuels
,”
Combust. Flame
,
155
(4), pp.
713
738
.10.1016/j.combustflame.2008.05.002
17.
Kokjohn
,
S.
,
Hanson
,
R.
,
Splitter
,
D.
,
Kaddatz
,
J.
, and
Reitz
,
R
.,
2011
, “
Fuel Reactivity Controlled Compression Ignition (RCCI) Combustion in Light- and Heavy-Duty Engines
,”
SAE Int. J. Engines
,
4
(1), pp.
360
374
.10.4271/2011-01-0357
18.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner, W. C.
,
Jr.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
,
2013
, “
GRI-Mech Home Page
,” http://www.me.berkeley.edu/gri_mech/
19.
Hiroyasu
,
H.
and
Kadota
,
T.
,
1976
, “
Models for Combustion and Formation of Nitric Oxide and Soot in Direct Injection Diesel Engines
,”
SAE
Technical Paper No. 760129.10.4271/760129
20.
Kong
,
S. C.
,
Yong
,
S.
, and
Reitz
,
R. D.
,
2007
, “
Modeling Diesel Spray Flame Liftoff, Sooting Tendency, and NOx Emissions Using Detailed Chemistry With Phenomenological Soot Model
,”
ASME J. Eng. Gas Turbines Power
,
129
(1), pp.
245
251
.10.1115/1.2181596
21.
Perini
,
F.
,
Galligani
,
E.
, and
Reitz
,
R. D.
,
2012
, “
An Analytical Jacobian Approach to Sparse Reaction Kinetics for Computationally Efficient Combustion Modeling With Large Reaction Mechanisms
,”
Energy Fuels
,
26
(8), pp.
4804
4822
.10.1021/ef300747n
22.
Abani
,
N.
,
Kokjohn
,
S.
,
Park
,
S. W.
,
Bergin
,
M.
,
Munnannur
,
A.
,
Ning
,
W.
,
Sun
,
Y.
, and
Reitz
,
R. D.
,
2008
, “
An Improved Spray Model for Reducing Numerical Parameter Dependencies in Diesel Engine CFD Simulations
,”
SAE
International Technical Paper No. 2008-01-0970. 10.4271/2008-01-0970
23.
Beale
,
J. C.
and
Reitz
,
R. D.
,
1999
, “
Modeling Spray Atomization With the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model
,”
Atomization Sprays
,
9
(6), pp.
623
650
.
24.
Han
,
Z.
and
Reitz
,
R. D.
,
1995
, “
Turbulence Modeling of Internal Combustion Engines Using RNG κ-ɛ Models
,”
Combust. Sci. Technol.
,
106
(4–6), pp.
267
295
.10.1080/00102209508907782
25.
Hanson
,
R.
,
Kokjohn
,
S.
,
Splitter
,
D.
, and
Reitz
,
R.
,
2011
, “
Fuel Effects on Reactivity Controlled Compression Ignition (RCCI) Combustion at Low Load
,”
SAE Int. J. Engines
,
4
, pp.
394
411
.10.4271/2011-01-0361
26.
Wissink
,
M. L.
,
Lim
,
J. H.
,
Splitter
,
D. A.
,
Hanson
,
R. M.
, and
Reitz
,
R. D.
,
2012
, “
Investigation of Injection Strategies to Improve High Efficiency RCCI Combustion With Diesel and Gasoline Direct Injection
,”
ASME Internal Combustion Engine Division Fall Technical Conference
, Vancouver, BC, Canada, September 23–26,
ASME
Paper No. ICEF2012-92107. 10.1115/ICEF2012-92107
27.
Eng
,
J. A.
,
2002
, “
Characterization of Pressure Waves in HCCI Combustion
,”
SAE
International Technical Paper No. 2002-01-2859. 10.4271/2002-01-2859
28.
Shi
,
Y.
and
Reitz
,
R. D.
,
2009
, “
Assessment of Optimization Methodologies to Study the Effects of Bowl Geometry, Spray Targeting and Swirl Ratio for a Heavy-Duty Diesel Engine Operated at High-Load
,”
SAE Int. J. Engines
,
1
(1), pp.
537
557
.10.4271/2008-01-0949
29.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(2), pp.
182
197
.10.1109/4235.996017
30.
Genzale
,
C. L.
,
Reitz
,
R. D.
, and
Wickman
,
D. D.
,
2007
, “
A Computational Investigation Into the Effects of Spray Targeting, Bowl Geometry and Swirl Ratio for Low-Temperature Combustion in a Heavy-Duty Diesel Engine
,”
SAE
International Technical Paper No. 2007-01-0119. 10.4271/2007-01-0119
31.
Genzale
,
C. L.
,
2008
, “
Optimizing Combustion Chamber Design for Low-Temperature Diesel Combustion
,” Ph.D. dissertation, University of Wisconsin-Madison, Madison, WI.
32.
Deb
,
K.
and
Jain
,
S.
,
2002
, “
Running Performance Metrics for Evolutionary Multi-Objective Optimization
,” Indian Institute of Technology, Kanpur, India, KanGAL Report No. 2002004.
You do not currently have access to this content.