The pneumatic hybridization of power trains is especially effective when it is combined with strong downsizing and supercharging of spark ignited engines. This paper presents measurement results obtained from such an engine. Specifically, performance measurements for all additional engine modes are shown. The pneumatic motor mode and the pneumatic pump mode are individually optimized over their whole operating range for maximum recuperation efficiency. Jointly with the conventional combustion mode and the pneumatic supercharged mode, they are implemented in one engine control system, thereby enabling the switching between all modes. A dynamometer simulates the longitudinal dynamics of two series production vehicles for the modified engine. This experimental setup, defined as emulation, is used to accurately measure the engine’s fuel consumption in the MVEG-95 and federal test procedure (FTP) drive cycles. Causal and noncausal energy management strategies are presented and used for choosing the engine mode during a drive cycle. Fuel savings of up to 35% are measured when comparing the modified engine to the vehicles’ standard engines with the same rated power. Hybrid pneumatic vehicles (HPVs) may prove to be a viable alternative to hybrid electric vehicles since fuel savings and driveability are comparable, while the added cost is expected to be substantially lower for HPVs.

1.
Schechter
,
M.
, 1999, “
New Cycles For Automobile Engines
,” SAE Paper No. 1999-01-0623.
2.
Higelin
,
P.
,
Charlet
,
A.
, and
Chamaillard
,
Y.
, 2002, “
Thermodynamic Simulation of a Hybrid Pneumatic Combustion Engine Concept
,”
Int. J. Thermodyn.
1301-9724,
5
(
1
), pp.
1
11
.
3.
Turner
,
J.
,
Pearson
,
R.
, and
Kenchington
,
S.
, 2005, “
Concepts for Improved Fuel Economy From Gasoline Engines
,”
Int. J. Engine Res.
1468-0874,
6
(
2
), pp.
137
157
.
4.
Andersson
,
M.
, 2005, “
An Air Hybrid for High Power Absorption and Discharge
,” SAE Paper No. 2005-01-2137.
5.
Dönitz
,
C.
,
Vasile
,
I.
,
Onder
,
C.
, and
Guzzella
,
L.
, 2009, “
Modelling and Optimizing Two- and Four-Stroke Hybrid Pneumatic Engines
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
0954-4070,
223
(
2
), pp.
255
280
.
6.
Dönitz
,
C.
,
Vasile
,
I.
,
Onder
,
C.
, and
Guzzella
,
L.
, 2009, “
Realizing a Concept for High Efficiency and Excellent Driveability: The Downsized and Supercharged Hybrid Pneumatic Engine
,” SAE Paper No. 2009-01-1326.
7.
Dönitz
,
C.
,
Vasile
,
I.
,
Onder
,
C.
, and
Guzzella
,
L.
, 2009, “
Dynamic Programming for Hybrid Pneumatic Vehicles
,”
Proceedings of the 28th American Control Conference
, pp.
3956
3963
.
8.
Vasile
,
I.
,
Dönitz
,
C.
,
Voser
,
C.
,
Vetterli
,
J.
,
Onder
,
C.
, and
Guzzella
,
L.
, 2009, “
Rapid Start of Hybrid Pneumatic Engines
,”
IFAC Workshop on Engine and Powertrain Control, Simulation and Modeling
.
9.
Tai
,
C.
,
Tsao
,
T. -C.
,
Levin
,
M.
, and
Schechter
,
M.
, 2003, “
Using Camless Valvetrain for Air Hybrid Optimization
,” SAE Paper No. 2003-01-0038.
10.
Higelin
,
P.
,
Vasile
,
I.
,
Charlet
,
A.
, and
Chamaillard
,
Y.
, 2004, “
Parametric Optimization of a New Hybrid Pneumatic Combustion Engine Concept
,”
Int. J. Engine Res.
1468-0874,
5
(
2
), pp.
205
217
.
11.
Trajkovic
,
S.
,
Tunestal
,
P.
, and
Johansson
,
B.
, 2009, “
Simulation of a Pneumatic Hybrid Powertrain With VVT in GT-Power and Comparison With Experimental Data
,” SAE Paper No. 2009-01-1323.
12.
Fazeli
,
A.
,
Khajepour
,
A.
,
Devaud
,
C.
, and
Azad
,
N. L.
, 2009, “
A New Air Hybrid Engine Using Throttle Control
,” SAE Paper No. 2009-01-1319.
13.
Brejaud
,
P.
,
Charlet
,
A.
,
Chamaillard
,
Y.
,
Ivanco
,
A.
, and
Higelin
,
P.
, 2010, “
Pneumatic-Combustion Hybrid Engine: A Study of the Effect of the Valvetrain Sophistication on Pneumatic Modes
,”
Oil Gas Sci. Technol.
,
65
(
1
), pp.
27
37
.
14.
Lee
,
C. -Y.
,
Zhao
,
H.
, and
Ma
,
T.
, 2009. “
Analysis of a Cost Effective Air Hybrid Concept
,” SAE Paper No. 2009-01-1111.
15.
Ivanco
,
A.
,
Charlet
,
A.
,
Chamaillard
,
Y.
, and
Higelin
,
P.
, 2009, “
Energy Management Strategies for Hybrid-Pneumatic Engine Studied on an Markov Chain Type Generated Driving Cycle
,” SAE Paper No. 2009-01-0145.
16.
Wang
,
X.
,
Tsao
,
T. -C.
,
Tai
,
C.
,
Kang
,
H.
, and
Blumberg
,
P. N.
, 2009, “
Modeling of Compressed Air Hybrid Operation for a Heavy Duty Diesel Engine
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
131
(
5
), p.
052802
.
17.
Guzzella
,
L.
, and
Sciarretta
,
A.
, 2007,
Vehicle Propulsion Systems
, 2nd ed.,
Springer-Verlag
,
Berlin
.
18.
Denger
,
D.
, and
Mischker
,
K.
, 2005, “
The Electro-Hydraulic Valvetrain System EHVS System and Potential
,” SAE Paper No. 2005-01-0774.
19.
Guzzella
,
L.
, and
Onder
,
C. H.
, 2004,
Introduction to Modeling and Control of Internal Combustion Engine Systems
,
Springer
,
Berlin
.
20.
Shafai
,
E.
, 1990. “
Fahrzeugemulation an einem dynamischen verbrennungsmotor-prüfstand
,” Ph.D. thesis, ETH Zurich, Switzerland.
21.
Bertsekas
,
D.
, 1995,
Dynamic Programming and Optimal Control
, Vol.
1
,
Athena Scientific
,
Belmont, MA
.
22.
Sundström
,
O.
, and
Guzzella
,
L.
, 2009. “
A Generic Dynamic Programming MATLAB Function
,”
Proceedings of the 18th IEEE International Conference on Control Applications
, pp.
1625
1630
.
23.
Energie Schweiz, and Bundesamt für Energie (BFE)
, 2009, Verbrauchskatalog—Fahrzeugliste mit Verbrauchsangaben Touring Club Schweiz (TCS) and EnergieSchweiz.
24.
Soltic
,
P.
, and
Guzzella
,
L.
, 2000, “
Optimum SI Engine Based Powertrain Systems for Lightweight Passenger Cars
,” SAE Paper No. 2000-01-0827.
You do not currently have access to this content.