Thermodynamic optimization of power plants based on supercritical (SupC) and ultrasupercritical (USC) steam parameters is reported in this article. The objective is to compute the maximum attainable power plant efficiency in Indian climatic conditions using high ash (HA) indigenous coal. A unit size of 800 MWe presently under development in India is considered for energy and exergy analysis of power plants. Commercially established steam turbine parameters are used for the optimization of SupC power plant, whereas advanced steam turbine parameters currently under research and development are used for the optimization of USC power plant. The plant energy efficiency of the optimized SupC and USC power plant based on air-coal combustion (ACC) show considerable increases of 2.8 and 5.2% points, respectively compared with the current SupC ACC power plant (reference plant) being commissioned in India. The increases in plant exergy efficiency for the same power plants are 2.6 and 4.8% points and the corresponding CO2 reductions are about 6 and 11%, respectively. The maximum possible plant energy efficiency in Indian climatic conditions using HA Indian coal is about 42.7% (USC power plant). The effect of low ash coal on plant energy and exergy efficiencies compared with HA coal is also presented. Further, the effect of oxy-coal combustion (OCC) on the plant energy and exergy efficiencies compared with the ACC is studied for the double reheat SupC and USC power plants to account for the impact of CO2 capture. A significant reduction of 8.8 and 6.6% points in plant energy efficiency is observed for SupC and USC OCC power plants, respectively compared with the reference SupC ACC power plant.

10.
Asthana
,
V.
,
Panigrahi
,
P. K.
, and
Kant
,
K.
, 2006, “
Optimization of Heat Transfer in Coal Fired Power Stations Using Exergy Analysis
,”
Proceedings of the 18th National and Seventh ISHMT-ASME Heat and Mass Transfer Conference
, Guwahati, India, pp.
1766
1773
.
11.
Suresh
,
M. V. J. J.
,
Reddy
,
K. S.
, and
Kolar
,
A. K.
, 2010, “
3-E Analysis of Advanced Power Plants Based on High Ash Coal
,”
Int. J. Energy Res.
0363-907X,
34
, pp.
716
735
.
12.
National Thermal Power Corporation Limited (NTPC)
, 2008, “
Power Plant Data
,” Engineering Office Complex, Noida, India, private communication.
13.
Cengel
,
Y. A.
, and
Boles
,
M. A.
, 2004,
Thermodynamics: An Engineering Approach
, 4th ed.,
Tata McGraw-Hill
,
New Delhi
.
14.
Rosen
,
M. A.
, 2001, “
Energy- and Exergy-Based Comparison of Coal-Fired and Nuclear Steam Power Plants
,”
Exergy Int. J.
,
1
(
3
), pp.
180
92
.
15.
Sengupta
,
S.
,
Datta
,
A.
, and
Duttagupta
,
S.
, 2007, “
Exergy Analysis of a Coal-Based 210 MW Thermal Power Plant
,”
Int. J. Energy Res.
0363-907X,
31
, pp.
14
28
.
16.
Intergovernmental Panel on Climate Change (IPCC)
, 2005,
Special Report on Carbon Dioxide Capture and Storage
,
Cambridge University Press
,
New York
.
17.
Kanniche
,
M.
,
Gros-Bonnivard
,
R.
,
Jaud
,
P.
,
Valle-Marcos
,
J.
,
Amann
,
J. M.
, and
Bouallou
,
C.
, 2010, “
Pre-Combustion, Post-Combustion and Oxy-Combustion in Thermal Power Plant for CO2 Capture
,”
Appl. Therm. Eng.
1359-4311,
30
, pp.
53
62
.
18.
Buhre
,
B. J. P.
,
Elliott
,
L. K.
,
Sheng
,
C. D.
,
Gupta
,
R. P.
, and
Wall
,
T. F.
, 2005, “
Oxy-Fuel Combustion Technology for Coal-Fired Power Generation
,”
Prog. Energy Combust. Sci.
0360-1285,
31
, pp.
283
307
.
19.
Hadjipaschalis
,
I.
,
Kourtis
,
G.
, and
Poullikkas
,
A.
, 2009, “
Assessment of Oxyfuel Power Generation Technologies
,”
Renewable Sustainable Energy Rev.
1364-0321,
13
, pp.
2637
2644
.
21.
Barroso
,
J.
,
Ballester
,
J.
,
Ferrer
,
L. M.
, and
Jiménez
,
S.
, 2006, “
Study of Coal Ash Deposition in an Entrained Flow Reactor: Influence of Coal Type, Blend Composition and Operating Conditions
,”
Fuel Process. Technol.
0378-3820,
87
, pp.
737
752
.
22.
Zhang
,
N.
, and
Lior
,
N.
, 2008, “
Comparative Study of Two Low CO2 Emission Power Generation System Options With Natural Gas Reforming
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
130
, p.
051701
.
23.
Wall
,
T. F.
, 2007, “
Combustion Processes for Carbon Capture
,”
Proc. Combust. Inst.
1540-7489,
31
, pp.
31
47
.
24.
DONG Energy Generation
, 2008, “
Power Plant Data
,” Denmark, private communication.
25.
Edelmann
,
H.
,
Effert
,
M.
,
Wieghardt
,
K.
, and
Kirchner
,
H.
, 2007, “
The 700°C Steam Turbine Power Plant—Status of Development and Outlook
,”
Int. J. Energy Technol. Policy
,
5
(
3
), pp.
366
382
.
26.
Asthana
,
V.
, and
Panigrahi
,
P. K.
, 2008, “
Performance of Power Plants With High Temperature Conditions at Sub-Critical Pressures
,”
Proceedings of the Fifth European Thermal-Sciences Conference
, The Netherlands; http:www.eurotherm2008.tue.nl/Proceedings_Eurotherm2008/papers/Thermal_Processes/THP_8.pdfhttp:www.eurotherm2008.tue.nl/Proceedings_Eurotherm2008/papers/Thermal_Processes/THP_8.pdf.
27.
Khartchenko
,
N. V.
, 1998,
Advanced Energy Systems
,
Taylor & Francis
,
Washington, DC
.
28.
Frankland
,
S. C.
, and
Johar
,
J. M. S.
, 2004, “
Technical and Economic Feasibility of Low Ash Power Station Fuel in India
,” Report No. COAL R254 DTI/Pub URN 04/822; http://www.berr.gov.uk/files/file20565.pdfhttp://www.berr.gov.uk/files/file20565.pdf.
30.
Nag
,
P. K.
, 2008,
Power Plant Engineering
, 3rd ed.,
Tata McGraw-Hill
,
New Delhi, India
.
31.
Department of Trade and Industry
, 1999, “
Supercritical Steam Cycles for Power Generation Applications
,” http://www.berr.gov.uk/files/file18320.pdfhttp://www.berr.gov.uk/files/file18320.pdf
33.
Mäenpää
,
L.
, 2008, “
Boiler Design of Innovative 600°C- and 700°C-Power Plants
,” http://files.messe.de/cmsdb/001/14476.pdfhttp://files.messe.de/cmsdb/001/14476.pdf.
34.
Davison
,
J.
, and
Thambimuthu
,
K.
, 2004, “
Technologies for Capture of Carbon Dioxide
,”
Proceedings of the Seventh International Conference on Greenhouse Gas Technologies
, Vancouver, Canada; http://uregina.ca/ghgt7/PDF/papers/peer/597.pdfhttp://uregina.ca/ghgt7/PDF/papers/peer/597.pdf.
35.
Susta
,
M. R.
, 2008, “
Latest Developments in Supercritical Steam Technology
,” http://www.imteag.com/2-2009-07.pdfhttp://www.imteag.com/2-2009-07.pdf
36.
Bugge
,
J.
,
Kjær
,
S.
, and
Blum
,
R.
, 2006, “
High-Efficiency Coal-Fired Power Plants Development and Perspectives
,”
Energy
0360-5442,
31
, pp.
1437
1445
.
37.
Retzlaff
,
K. M.
, and
Ruegger
,
W. A.
, 1996, “
Steam Turbines for Ultrasupercritical Power Plants
,” http://www.gepower.com/prod_serv/products/tech_docs/en/downloads/ger3945a.pdfhttp://www.gepower.com/prod_serv/products/tech_docs/en/downloads/ger3945a.pdf
38.
Ohji
,
A.
, 2002, “
Research and Development of Advanced Steam Turbine Systems Employing Ultra Super Critical Pressure Steam Conditions for Future Generations
,”
JSME Int. J., Ser. B
1340-8054,
45
(
2
), pp.
399
407
.
39.
40.
Ikeda
,
E.
,
Lowe
,
A.
,
Spero
,
C.
, and
Stubington
,
J.
, 2007, “
Technical Performance of Electric Power Generation Systems
,” http://www.ccsd.biz/publications/files/TA/TA%2063%20Vol%201_Adaptation_ web.pdfhttp://www.ccsd.biz/publications/files/TA/TA%2063%20Vol%201_Adaptation_ web.pdf
42.
Kakaras
,
E.
,
Koumanakos
,
A.
,
Doukelis
,
A.
,
Giannakopoulos
,
D.
, and
Vorrias
,
I.
, 2007, “
Simulation of a Greenfield Oxyfuel Lignite-Fired Power Plant
,”
Energy Convers. Manage.
0196-8904,
48
, pp.
2879
2887
.
43.
Korkmaz
,
Ö.
,
Oeljeklaus
,
G.
, and
Görner
,
K.
, 2009, “
Analysis of Retrofitting Coal-Fired Power Plants With Carbon Dioxide Capture
,”
Energy Procedia
,
1
, pp.
1289
1295
.
You do not currently have access to this content.