A recently developed nonlinear flame describing function (FDF) is used to analyze combustion instabilities in a system where the feeding manifold has a variable size and where the flame is confined by quartz tubes of variable length. Self-sustained combustion oscillations are observed when the geometry is changed. The regimes of oscillation are characterized at the limit cycle and also during the onset of oscillations. The theoretical predictions of the oscillation frequencies and levels are obtained using the FDF. This generalizes the concept of flame transfer function by including dependence on the frequency and level of oscillation. Predictions are compared with experimental results for two different lengths of the confinement tube. These results are, in turn, used to predict most of the experimentally observed phenomena and in particular, the correct oscillation levels and frequencies at limit cycles.

1.
Strutt
,
J. W.
, 1878, “
The Explanation of Certain Acoustical Phenomena
,”
Notices of the Proceedings Members of the Royal Institution (of Great Britain)
, Vol.
3
, pp.
536
542
.
2.
Crocco
,
L.
, and
Cheng
,
S.
, 1956, “
Theory of Combustion Instability in Liquid Propellant Rocket Motors
,” AGARDOGRAPH No. 8, Butterworths Science Publication.
3.
Putnam
,
A.
, 1971,
Combustion Driven Oscillations in Industry
,
Elsevier
,
New York
.
4.
Culick
,
F. E. C.
, 2001, “
Dynamics of Combustion Systems: Fundamentals, Acoustics and Control
,”
NASA
Glenn Research Center.
5.
Candel
,
S.
, 2002, “
Combustion Dynamics and Control: Progress and Challenges
,”
Proc. Combust. Inst.
1540-7489,
29
, pp.
1
28
.
6.
Huang
,
Y.
, and
Yang
,
V.
, 2009, “
Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion
,”
Prog. Energy Combust. Sci.
0360-1285,
35
(
4
), pp.
293
364
.
7.
Matsui
,
Y.
, 1981, “
An Experimental Study on Pyro-Acoustic Amplification of Premixed Laminar Flames
,”
Combust. Flame
0010-2180,
43
, pp.
199
209
.
8.
Ducruix
,
S.
,
Durox
,
D.
, and
Candel
,
S.
, 2000, “
Theoretical and Experimental Determination of the Transfer Function of a Laminar Premixed Flame
,”
Proc. Combust. Inst.
1540-7489,
28
, pp.
765
773
.
9.
Durox
,
D.
,
Schuller
,
T.
,
Noiray
,
N.
, and
Candel
,
S.
, 2009, “
Experimental Analysis of Nonlinear Flame Transfer Functions for Different Flame Geometries
,”
Proc. Combust. Inst.
1540-7489,
32
, pp.
1391
1398
.
10.
Kornilov
,
V.
,
Rook
,
R.
,
Ten Thije Boonkkamp
,
J.
, and
De Goey
,
L.
, 2009, “
Experimental and Numerical Investigation of the Acoustic Response of Multi-Slit Bunsen Burners
,”
Combust. Flame
0010-2180,
156
(
10
), pp.
1957
1970
.
11.
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
, 2003, “
A Unified Model for the Prediction of Laminar Flame Transfer Functions: Comparisons Between Conical and V-Flame Dynamics
,”
Combust. Flame
0010-2180,
134
, pp.
21
34
.
12.
Polifke
,
W.
, and
Lawn
,
C.
, 2007, “
On the Low-Frequency Limit of Flame Transfer Functions
,”
Combust. Flame
0010-2180,
151
(
3
), pp.
437
451
.
13.
Fleifil
,
M.
,
Annaswamy
,
A.
,
Ghoneim
,
Z.
, and
Ghoniem
,
A.
, 1996, “
Response of a Laminar Premixed Flame to Flow Oscillations: A Kinematic Model and Thermoacoustic Instability Results
,”
Combust. Flame
0010-2180,
106
, pp.
487
510
.
14.
Schuller
,
T.
,
Ducruix
,
S.
,
Durox
,
D.
, and
Candel
,
S.
, 2002, “
Modeling Tools for the Prediction of Premixed Flame Transfer Function
,”
Proc. Combust. Inst.
1540-7489,
29
, pp.
107
113
.
15.
Gentemann
,
A.
,
Hirsch
,
C.
,
Kunze
,
K.
,
Kiesewetter
,
F.
,
Sattelmayer
,
T.
, and
Polifke
,
W.
, 2004, “
Validation of Flame Transfer Function Reconstruction for Perfectly Premixed Swirl Flames
,”
ASME
Paper No. GT2004-53776.
16.
Armitage
,
C.
,
Riley
,
A.
,
Cant
,
R.
,
Dowling
,
A.
, and
Stow
,
S
., 2004, “
Flame Transfer Function for Swirled LPP Combustion From Experiments and CFD
,”
ASME
Paper No. GT2004-53820.
17.
Truffin
,
K.
, and
Poinsot
,
T.
, 2005, “
Comparison and Extension of Methods for Acoustic Identification of Burners
,”
Combust. Flame
0010-2180,
142
(
4
), pp.
388
400
.
18.
Giauque
,
A.
,
Selle
,
L.
,
Gicquel
,
L.
,
Poinsot
,
T.
,
Buechner
,
H.
,
Kaufmann
,
P.
, and
Krebs
,
W.
, 2005, “
System Identification of a Large-Scale Swirled Partially Premixed Combustor Using LES and Measurements
,”
J. Turbul.
1468-5248,
6
, pp.
1
20
.
19.
Schuermans
,
B.
,
Bellucci
,
V.
, and
Paschereit
,
C.
, 2003, “
Thermoacoustic Modeling and Control of Multi Burner Combustion Systems
,”
ASME
Paper No. GT2003-38688.
20.
Poinsot
,
T.
, and
Veynante
,
D.
, 2001,
Theoretical and Numerical Combustion
,
Edwards
,
Philadelphia
.
21.
Moeck
,
J.
,
Oevermann
,
M.
,
Klein
,
R.
,
Paschereit
,
C.
, and
Schmidt
,
H.
, 2009, “
A Two-Way Coupling for Modeling Thermoacoustic Instabilities in a Flat Flame Rijke Tube
,”
Proc. Combust. Inst.
1540-7489,
32
(
1
), pp.
1199
1207
.
22.
Krebs
,
W.
,
Flohr
,
P.
,
Prade
,
B.
, and
Hoffmann
,
S.
, 2002, “
Thermoacoustic Stability Chart for High-Intensity Gas Turbine Combustion Systems
,”
Combust. Sci. Technol.
0010-2202,
174
(
7
), pp.
99
128
.
23.
Paschereit
,
C.
,
Schuermans
,
B.
,
Polifke
,
W.
, and
Mattson
,
O.
, 2002, “
Measurement of Transfer Matrices and Source Terms of Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
124
(
2
), pp.
239
247
.
24.
Kim
,
K.
,
Lee
,
J.
,
Lee
,
H.
,
Quay
,
B.
, and
Santavicca
,
D.
, 2010, “
Characterization of Forced Flame Response of Swirl-Stabilized Turbulent Lean-Premixed Flames in a Gas Turbine Combustor
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
132
(
4
), p.
041502
.
25.
Schuermans
,
B.
,
Guethe
,
F.
,
Pennel
,
D.
,
Guyot
,
D.
, and
Paschereit
,
C.
, 2009, “
Thermoacoustic Modeling of a Gas Turbine Using Transfer Functions Measured at Full Engine Pressure
,”
ASME
Paper No. GT2009-59605.
26.
Martin
,
C.
,
Benoit
,
L.
,
Sommerer
,
Y.
,
Nicoud
,
F.
, and
Poinsot
,
T.
, 2006, “
Large-Eddy Simulation and Acoustic Analysis of a Swirled Staged Turbulent Combustor
,”
AIAA J.
0001-1452,
44
(
4
), pp.
741
750
.
27.
Dowling
,
A.
, 1999, “
A Kinematic Model of a Ducted Flame
,”
J. Fluid Mech.
0022-1120,
394
(
1
), pp.
51
72
.
28.
Pankiewitz
,
C.
, and
Sattelmayer
,
T.
, 2003, “
Time Domain Simulation of Combustion Instabilities in Annular Combustors
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
125
(
3
), pp.
677
685
.
29.
Bellows
,
B.
, and
Lieuwen
,
T.
, 2004, “
Nonlinear Response of a Premixed Combustor for Forced Acoustic Oscillations
,”
Forty Second AIAA Aerospace Sciences Meeting
, AIAA Paper No. 2004-0455.
30.
Bellows
,
B.
,
Zhang
,
Q.
,
Neumeier
,
Y.
,
Lieuwen
,
T.
, and
Zinn
,
B.
, 2003, “
Forced Response Studies of a Premixed Flame to Flow Disturbances in a Gas Turbine Forced Response Studies of a Premixed Flame to Flow Disturbances in a Gas Turbinecombustor
,”
Forty-First AIAA Aerospace Sciences Meeting
, Vol.
824
, AIAA Paper No. 2003-0824.
31.
Balachandran
,
R.
,
Ayoola
,
B.
,
Kaminski
,
C.
,
Dowling
,
A.
, and
Mastorakos
,
E.
, 2005, “
Experimental Investigation of the Non Linear Response of Turbulent Premixed Flames to Imposed Inlet Velocity Oscillations
,”
Combust. Flame
0010-2180,
143
(
1–2
), pp.
37
55
.
32.
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
, 2005, “
Combustion Dynamics of Inverted Conical Flames
,”
Proc. Combust. Inst.
1540-7489,
30
(
2
), pp.
1717
1724
.
33.
Kim
,
D.
,
Lee
,
J.
,
Quay
,
B.
,
Santavicca
,
D.
,
Kim
,
K.
, and
Srinivasan
,
S.
, 2010, “
Effect of Flame Structure on the Flame Transfer Function in a Premixed Gas Turbine Combustor
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
132
(
2
), p.
021502
.
34.
Karimi
,
N.
,
Brear
,
M.
,
Jin
,
S.
, and
Monty
,
J.
, 2009, “
Linear and Non-Linear Forced Response of a Conical, Ducted, Laminar Premixed Flame
,”
Combust. Flame
0010-2180,
156
(
11
), pp.
2201
2212
.
35.
Noiray
,
N.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
, 2008, “
A Unified Framework for Nonlinear Combustion Instability Analysis Based on the Flame Describing Function
,”
J. Fluid Mech.
0022-1120,
615
, pp.
139
167
.
36.
Noiray
,
N.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
, 2009, “
A Method for Estimating the Noise Level of Unstable Combustion Based on the Flame Describing Function
,”
Int. J. Aeroacoust.
1475-472X,
8
(
1
), pp.
157
176
.
37.
Hield
,
P.
,
Brear
,
M.
, and
Jin
,
S.
, 2009, “
Thermoacoustic Limit Cycles in a Premixed Laboratory Combustor With Open and Choked Exits
,”
Combust. Flame
0010-2180,
156
(
9
), pp.
1683
1697
.
38.
Staffelbach
,
G.
,
Gicquel
,
L.
,
Boudier
,
G.
, and
Poinsot
,
T.
, 2009, “
Large Eddy Simulation of Self Excited Azimuthal Modes in Annular Combustors
,”
Proc. Combust. Inst.
1540-7489,
32
(
2
), pp.
2909
2916
.
39.
Hurle
,
I.
,
Price
,
R.
,
Sudgen
,
T.
, and
Thomas
,
A.
, 1968, “
Sound Emission From Open Turbulent Premixed Flames
,”
Proc. R. Soc. London, Ser. A
0950-1207,
303
, pp.
409
427
.
40.
Dowling
,
A.
, and
Stow
,
S.
, 2003, “
Acoustic Analysis of Gas Turbine Combustors
,”
J. Propul. Power
0748-4658,
19
(
5
), pp.
751
764
.
41.
Culick
,
F. E. C.
, 2006, “
Unsteady Motions in Combustion Chambers for Propulsion Systems
,” AGARDOGRAPH, NATO/RTOAG-AVT-039.
42.
Melling
,
T. H.
, 1973, “
The Acoustic Impedance of Perforates at Medium and High Sound Pressure Levels
,”
J. Sound Vib.
0022-460X,
29
(
1
), pp.
1
65
.
43.
Durox
,
D.
,
Schuller
,
T.
,
Noiray
,
N.
,
Birbaud
,
A.
, and
Candel
,
S.
, 2009, “
Rayleigh Criterion and Acoustic Energy Balance in Unconfined Self-Sustained Oscillating Flames
,”
Combust. Flame
0010-2180,
156
, pp.
106
119
.
You do not currently have access to this content.