Atomizing liquids by injecting them into crossflows is a common approach in gas turbines and augmentors. Much of our current understanding of the processes resulting in atomization of the jets, the resulting jet penetration and spray drop size distribution have been obtained by performing laboratory experiments at ambient conditions. Yet, operating conditions under which jets in crossflows atomize can be far different from ambient. Hence, several dimensionless groups have been identified that are believed to determine jet penetration and resulting drop size distribution. These are usually the jet and crossflow Weber and Reynolds numbers and the momentum flux ratio. In this paper, we aim to answer the question of whether an additional dimensionless group, the liquid to gas density ratio must be matched. We perform detailed simulations of the primary atomization region using the refined level set grid (RLSG) method to track the motion of the liquid/gas phase interface. We employ a balanced force, interface projected curvature method to ensure high accuracy of the surface tension forces, use a multiscale approach to transfer broken off, small scale nearly spherical drops into a Lagrangian point particle description allowing for full two-way coupling and continued secondary atomization, and employ a dynamic Smagorinsky large eddy simulation (LES) approach in the single phase regions of the flow to describe turbulence. We present simulation results for a turbulent liquid jet (q=6.6, We=330, and Re=14,000) injected into a gaseous crossflow (Re=740,000) analyzed under ambient conditions (density ratio 816) experimentally by Brown and McDonnell [2006, “Near Field Behavior of a Liquid Jet in a Crossflow,” Proceedings of the ILASS Americas, 19th Annual Conference on Liquid Atomization and Spray Systems]. We compare simulation results obtained using a liquid to gas density ratio of 10 and 100. The results show that the increase in density ratio causes a noticeable increase in liquid core penetration with reduced bending and spreading in the transverse directions. The post-primary atomization spray penetrates further in both the jet and transverse direction. Results further show that the penetration correlations for the windward side trajectory commonly reported in the literature strongly depend on the value of threshold probability used to identify the leading edge. Correlations based on penetration of the jet’s liquid core center of mass, on the other hand, can provide a less ambiguous measure of jet penetration. Finally, the increase in density ratio results in a decrease in wavelength of the most dominant feature associated with a traveling wave along the jet as determined by proper orthogonal decomposition.

1.
Aalburg
,
C.
,
van Leer
,
B.
,
Faeth
,
G. M.
, and
Sallam
,
K. A.
, 2005, “
Properties of Nonturbulent Round Liquid Jets in Uniform Gaseous Cross Flows
,”
Atomization Sprays
1044-5110,
15
(
3
), pp.
271
294
.
2.
Bellofiore
,
A.
,
Cavaliere
,
A.
, and
Ragucci
,
R.
, 2007, “
Air Density Effect on the Atomization of Liquid Jets in Crossflow
,”
Combust. Sci. Technol.
0010-2202,
179
(
1–2
), pp.
319
342
.
3.
Birouk
,
M.
,
Iyogun
,
C. O.
, and
Popplewell
,
N.
, 2007, “
Role of Viscosity on Trajectory of Liquid Jets in a Cross-Airflow
,”
Atomization Sprays
1044-5110,
17
(
3
), pp.
267
287
.
4.
Brown
,
C. T.
, and
McDonell
,
V. G.
, 2006, “
Near Field Behavior of a Liquid Jet in a Crossflow
,”
Proceedings of the ILASS Americas, 19th Annual Conference on Liquid Atomization and Spray Systems
.
5.
Brown
,
C. T.
,
Mondragon
,
U. M.
, and
McDonell
,
V. G.
, 2007, “
Investigation of the Effect of Injector Discharge Coefficient on Penetration of a Plain Liquid Jet Into a Subsonic Crossflow
,”
Proceedings of the ILASS Americas 20th Annual Conference on Liquid Atomization and Spray Systems
.
6.
Fuller
,
R. P.
,
Wu
,
P. -K.
,
Kirkendall
,
K. A.
, and
Nejad
,
A. S.
, 2000, “
Effects of Injection Angle on Atomization of Liquid Jets in Transverse Airflow
,”
AIAA J.
0001-1452,
38
(
1
), pp.
64
72
.
7.
Lee
,
K.
,
Aalburg
,
C.
,
Diez
,
F. J.
,
Faeth
,
G. M.
, and
Sallam
,
K. A.
, 2007, “
Primary Breakup of Turbulent Round Liquid Jets in Uniform Crossflows
,”
AIAA J.
0001-1452,
45
(
8
), pp.
1907
1916
.
8.
Mazallon
,
J.
,
Dai
,
Z.
, and
Faeth
,
G. M.
, 1999, “
Primary Breakup of Nonturbulent Round Liquid Jets in Gas Crossflows
,”
Atomization Sprays
1044-5110,
9
(
3
), pp.
291
311
.
9.
Ng
,
C. L.
,
Sankarakrishnan
,
R.
, and
Sallam
,
K. A.
, 2008, “
Bag Breakup of Nonturbulent Liquid Jets in Crossflow
,”
Int. J. Multiphase Flow
0301-9322,
34
(
3
), pp.
241
259
.
10.
Stenzler
,
J. N.
,
Lee
,
J. G.
,
Santavicca
,
D. A.
, and
Lee
,
W.
, 2006, “
Penetration of Liquid Jets in a Cross-Flow
,”
Atomization Sprays
1044-5110,
16
, pp.
887
906
.
11.
Thawley
,
S. M.
,
Mondragon
,
U. M.
,
Brown
,
C. T.
, and
McDonell
,
V. G.
, 2008, “
Evaluation of Column Breakpoint and Trajectory for a Plain Liquid Jet Injected Into a Crossflow
,”
Proceedings of the 21st Annual Conference on Liquid Atomization and Spray Systems
, pp.
1
11
.
12.
Wu
,
P. K.
,
Kirkendall
,
K. A.
,
Fuller
,
R. P.
, and
Nejad
,
A. S.
, 1997, “
Breakup Processes of Liquid Jets in Subsonic Crossflows
,”
J. Propul. Power
0748-4658,
13
(
1
), pp.
64
73
.
13.
Elshamy
,
O. M.
, and
Jeng
,
S. M.
, 2005, “
Study of Liquid Jet in Crossflow at Elevated Ambient Pressures
,”
Proceedings of the ILASS Americas, 18th Annual Conference on Liquid Atomization and Spray Systems
, pp.
1
10
.
14.
Elshamy
,
O. M.
, 2007, “
Experimental Investigations of Steady and Dynamic Behavior of Transverse Liquid Jets
,” Ph.D. thesis, University of Cincinnati.
15.
Leong
,
M. Y.
,
McDonell
,
V. G.
, and
Samuelsen
,
G. S.
, 2001, “
Effect of Ambient Pressure on an Airblast Spray Injected Into a Crossflow
,”
J. Propul. Power
0748-4658,
17
(
5
), pp.
1076
1084
.
16.
Becker
,
J.
, and
Hassa
,
C.
, 2002, “
Breakup and Atomization of a Kerosene Jet in Crossflow at Elevated Pressure
,”
Atomization Sprays
1044-5110,
12
, pp.
49
67
.
17.
Herrmann
,
M.
, 2008, “
A Balanced Force Refined Level Set Grid Method for Two-Phase Flows on Unstructured Flow Solver Grids
,”
J. Comput. Phys.
0021-9991,
227
(
4
), pp.
2674
2706
.
18.
Herrmann
,
M.
, 2010, “
Detailed Numerical Simulations of the Primary Atomization of a Turbulent Liquid Jet in Crossflow
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
132
(
6
), p.
061506
.
19.
Herrmann
,
M.
, 2010, “
A Parallel Eulerian Interface Tracking/Lagrangian Point Particle Multi-Scale Coupling Procedure
,”
J. Comput. Phys.
0021-9991,
229
, pp.
745
759
.
20.
Herrmann
,
M.
, 2009, “
Detailed Numerical Simulations of the Primary Atomization of a Turbulent Liquid Jet in Crossflow
,”
ASME
Paper No. GT2009-59563.
21.
Herrmann
,
M.
, and
Gorokhovski
,
M.
, 2009, “
A Large Eddy Simulation Subgrid Model for Turbulent Phase Interface Dynamics
,”
Proceedings of the ICLASS 2009, 11th Triennial International Annual Conference on Liquid Atomization and Spray Systems
, Paper No. ICLASS2009-205.
22.
Francois
,
M. M.
,
Cummins
,
S. J.
,
Dendy
,
E. D.
,
Kothe
,
D. B.
,
Sicilian
,
J. M.
, and
Williams
,
M. W.
, 2006, “
A Balanced-Force Algorithm for Continuous and Sharp Interfacial Surface Tension Models Within a Volume Tracking Framework
,”
J. Comput. Phys.
0021-9991,
213
, pp.
141
173
.
23.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
, 1992, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
0021-9991,
100
, pp.
335
354
.
24.
Apte
,
S. V.
,
Gorokhovski
,
M.
, and
Moin
,
P.
, 2003, “
LES of Atomizing Spray With Stochastic Modeling of Secondary Breakup
,”
Int. J. Multiphase Flow
0301-9322,
29
(
9
), pp.
1503
1522
.
25.
Moin
,
P.
, and
Apte
,
S. V.
, 2006, “
Large-Eddy Simulation of Realistic Gas Turbine Combustors
,”
AIAA J.
0001-1452,
44
(
4
), pp.
698
708
.
26.
Jiang
,
G. -S.
, and
Peng
,
D.
, 2000, “
Weighted ENO Schemes for Hamilton–Jacobi Equations
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
21
(
6
), pp.
2126
2143
.
27.
Shu
,
C. W.
, 1988, “
Total-Variation-Diminishing Time Discretization
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
0196-5204,
9
(
6
), pp.
1073
1084
.
28.
Alonso
,
J. J.
,
Hahn
,
S.
,
Ham
,
F.
,
Herrmann
,
M.
,
Iaccarino
.,
G.
,
Kalitzin
,
G.
,
LeGresley
,
P.
,
Mattsson
,
K.
,
Medic
,
G.
,
Moin
,
P.
,
Pitsch
,
H.
,
Schluter
,
J.
,
Svard
,
M.
,
der Weide
,
E. V.
,
You
,
D.
, and
Wu
,
X.
, 2006, “
CHIMPS: A High-Performance Scalable Module for Multi-Physics Simulation
,”
Proceedings of the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
, AIAA Paper No. 2006-5274.
29.
Herrmann
,
M.
, and
Hajiloo
,
S.
, 2008, “
Final Report Phase I Option: SBIR Topic N07-046: Advanced Liquid Surface Tracking Software for Predicting Atomization in Gas Turbine Combustors and Augmentors
,” Technical Report, CASCADE Technologies Inc.
30.
Stenzler
,
J. N.
,
Lee
,
J. G.
, and
Santavicca
,
D. A.
, 2003, “
Penetration of Liquid Jets in a Cross-Flow
,”
Proceedings of the 41st Aerospace Sciences Meeting and Exhibit
, Paper No. AIAA 2003-1327.
31.
Oberlack
,
M.
,
Wenzel
,
H.
, and
Peters
,
N.
, 2001, “
On Symmetries and Averaging of the G-Equation for Premixed Combustion
,”
Combust. Theory Modell.
1364-7830,
5
, pp.
363
383
.
32.
Herrmann
,
M.
, 2005, “
DNS of Turbulent Primary Atomization Using a Level Set/Vortex Sheet Method
,”
Proceedings of the ILASS Americas 18th Annual Conference on Liquid Atomization and Spray Systems
, Irvine, CA.
33.
Sallam
,
K. A.
,
Aalburg
,
C.
, and
Faeth
,
G. M.
, 2004, “
Breakup of Round Nonturbulent Liquid Jets in Gaseous Crossflow
,”
AIAA J.
0001-1452,
42
(
12
), pp.
2529
2540
.
34.
Sirovich
,
L.
, 1987, “
Turbulence and the Dynamics of Coherent Structures
,”
Q. Appl. Math.
0033-569X,
42
, pp.
561
590
.
35.
Arienti
,
M.
, and
Soteriou
,
M. C.
, 2009, “
Time-Resolved Proper Orthogonoal Decomposition of Liquid Jet Dynamics
,”
Phys. Fluids
0031-9171,
21
(
112104
), pp.
1
15
.
36.
Villermaux
,
E.
, 1998, “
Mixing and Spray Formation in Coaxial Jets
,”
J. Propul. Power
0748-4658,
14
(
5
), pp.
807
817
.
37.
Yecko
,
P.
,
Zaleski
,
S.
, and
Fullana
,
J. -M.
, 2002, “
Viscous Modes in Two-Phase Mixing Layers
,”
Phys. Fluids
0031-9171,
14
(
12
), pp.
4115
4122
.
38.
Boeck
,
T.
, and
Zaleski
,
S.
, 2005, “
Viscous vs Inviscid Instability of Two-Phase Mixing Layers With Continuous Velocity Profile
,”
Phys. Fluids
0031-9171,
17
(
3
), p.
032106
.
You do not currently have access to this content.