The objectives of this investigation were to design and construct a high speed turbocharger test rig (TTR) to measure dynamics of angular contact ball bearing rotor system, and to develop a coupled dynamic model for the ball bearing rotor system to corroborate the experimental and analytical results. In order to achieve the objectives of the experimental aspect of this study, a test rig was designed and developed to operate at speeds up to 70,000 rpm. The rotating components (i.e., turbine wheels) of the TTR were made to be dynamically similar to the actual turbocharger. Proximity sensors were used to record the turbine wheel displacements while accelerometers were used to monitor the rotor vibrations. The TTR was used to examine the dynamic response of the turbocharger under normal and extreme operating conditions. To achieve the objectives of analytical investigation, a discrete element ball bearing model was coupled through a set of interface points with a component mode synthesis rotor model to simulate the dynamics of the turbocharger test rig. Displacements of the rotor from the analytical model were corroborated with experimental results. The analytical and experimental results are in good agreement. The bearing rotor system model was used to examine the bearing component dynamics. Effects of preloading and imbalance were also found to have significant effects on turbocharger rotor and bearing dynamics.

References

1.
Wang
,
L.
,
Snidle
,
R.
, and
Gu
,
L.
, 2000, “
Rolling Contact Silicon Nitride Bearing Technology: A Review of Recent Research
,”
Wear
,
246
(
1–2
), pp.
159
173
.
2.
Miyashita
,
K.
,
Kurasawa
,
M.
,
Matsuoka
,
H.
,
Ikeya
,
N.
, and
Nakamura
,
F.
, 1987, “
Development of High Efficiency Ball-Bearing Turbocharger
,” SAE Paper No. 870354.
3.
Keller
,
R.
,
Scharrer
,
J.
, and
Pelletti
,
J.
, 1996, “
Alternative Performance Turbocharger Bearing Design
,” SAE Paper No. 962500.
4.
Tanimoto
,
K.
,
Kajihara
,
K.
, and
Yanai
K.
, 2000, “
Hybrid Ceramic Ball Bearings for Turbochargers
,” SAE Paper No. 2000-01-1339, pp.
1
14
.
5.
Adiletta
,
G.
,
Guido
,
A.
, and
Rossi
,
C.
, 1997, “
Nonlinear Dynamics of a Rigid Unbalanced Rotor in Journal Bearings. Part II: Experimental Analysis
,”
Nonlinear Dyn.
,
14
(
2
), pp.
157
189
.
6.
Dietl
,
P.
,
Wensing
,
J.
, and
Nijen
,
G. C.
, 2000, “
Rolling Bearing Damping for Dynamic Analysis of Multi-Body Systems—Experimental and Theoretical Results
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dyn.
,
214
(
1
), pp.
33
43
.
7.
Gjika
,
K.
, and
Groves
,
C.
, 2006, “
Nonlinear Dynamic Behavior of Rotor-Bearing Systems Involving Two Hydrodynamic Films in Series: Prediction and Test. Application to High-Speed Turbochargers
,”
Proc. ASME ESDA 2006
,
Torino
,
Italy
, Jul. 4–7, Paper No. ESDA2006-95792.
8.
Holt
,
C.
,
San Andres
,
L.
,
Sahay
,
S.
,
Tang
,
P.
,
La Rue
,
G.
, and
Gjika
,
K.
, 2005, “
Test Response and Nonlinear Analysis of a Turbocharger Supported on Floating Ring Bearings
,”
J. Vib. Acoust.
,
127
(
2
), pp.
107
115
.
9.
San Andres
,
L.
,
Rivadeneria
,
J. C.
,
Chinta
,
M.
,
Gjika
,
K.
, and
La Rue
,
G.
, 2007, “
Nonlinear Rotordynamics of Automotive Turbochargers: Predictions and Comparisons to Test Data
,”
J. Eng. Gas Turbines Power
,
129
(
2
), pp.
488
494
.
10.
San Andres
,
L.
,
Rivadeneria
,
J. C.
,
Gjika
,
K.
,
Groves
,
G.
, and
La Rue
,
G.
, 2007, “
A Virtual Tool for Prediction of Turbocharger Nonlinear Dynamic Response: Validation Against Test Data
,”
J. Eng. Gas Turbines Power
,
129
(
4
), pp.
1035
1047
.
11.
San Andres
,
L.
,
Rivadeneria
,
J. C.
,
Gjika
,
K.
,
Groves
,
G.
, and
La Rue
,
G.
, 2007, “
Rotordynamics of Small Turbochargers Supported on Floating Ring Bearings—Highlights in Bearing Analysis and Experimental Validation
,”
J. Tribol.
,
129
(
2
), pp.
391
398
.
12.
Bou-Said
,
B.
,
Grau
,
G.
, and
Iordanoff
,
J.
, 2008, “
On Nonlinear Rotor Dynamic Effects of Aerodynamic Bearings With Simple Flexible Rotors
,”
J. Eng. Gas Turbines Power
,
130
, p.
012503
.
13.
Pettinato
,
B. C.
, and
DeChoudhury
P.
, 2003, “
Rotordynamic and Bearing Upgrade of a High-Speed Turbocharger
,”
J. Eng. Gas Turbines Power
,
125
, pp.
95
102
.
14.
Bonello
,
P.
, 2009, “
Transient Modal Analysis of the Non-linear Dynamics of a Turbocharger on Floating Ring Bearings
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribology
,
223
, pp.
79
93
.
15.
Gupta
,
P. K.
, 1979, “
Dynamics of Rolling Element Bearings – Part IV: Ball Bearing Results
,”
J. Lubr. Technol.
,
101
, pp.
319
326
.
16.
Gupta
,
P. K.
, 1979, “
Dynamics of Rolling Element Bearings – Part I: Cylindrical Roller Bearing Analysis
,”
J. Lubr. Technol.
,
101
, pp.
293
304
.
17.
Gupta
,
P. K.
, 1979, “
Dynamics of Rolling Element Bearings – Part III: Ball Bearing Analysis
,”
J. Lubr. Technol.
,
101
, pp.
312
318
.
18.
Meyer
,
L.
,
Ahlgren
,
F.
, and
Weichbrodt
,
B.
, 1980, “
An Analytic Model for Ball Bearing Vibrations to Predict Vibration Response to Distributed Defects
,”
J. Mech. Des.
,
102
, pp.
205
210
.
19.
Saheta
,
V.
, 2001, “
Dynamics of Rolling Element Bearings Using Discrete Element Method
,” M.S. thesis, Purdue University, West Lafayette, IN.
20.
Ghaisas
,
N.
,
Wassgren
,
C.
, and
Sadeghi
,
F.
, 2004, “
Cage Instabilities in Cylindrical Roller Bearings
,”
J. Tribol.
,
126
(
4
), pp.
681
689
.
21.
Sopanen
,
J.
, and
Mikkola
,
A.
, 2003, “
Dynamic Model of a Deep-Groove Ball Bearing Including Localized and Distributed Defects. Part 1: Theory
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dyn.
,
217
(
3
), pp.
201
211
.
22.
Sopanen
,
J.
, and
Mikkola
,
A.
, 2003, “
Dynamic Model of a Deep-Groove Ball Bearing Including Localized and Distributed Defects. Part 2: Implementation and Results
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dyn.
,
217
(
3
), pp.
213
223
.
23.
Ashtekar
,
A.
,
Sadeghi
,
F.
, and
Stacke
,
L.
, 2010, “
Surface Defects Effects on Bearing Dynamics
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
224
(
1
), pp.
25
35
.
24.
Ashtekar
,
A.
,
Sadeghi
,
F.
, and
Stacke
,
L.
, 2008, “
A New Approach to Modeling Surface Defects in Bearing Dynamics Simulations
,”
J. Tribol.
,
130
(
4
), p.
041103
.
25.
Lim
,
T.
, and
Singh
,
R.
, 1990, “
Vibration Transmission Through Rolling Element Bearings, Part I: Bearing Stiffness Formulation
,”
J. Sound Vib.
,
139
(
2
), pp.
179
199
.
26.
Hendrikx
,
R.
,
Van Nijen
,
G.
, and
Dietl
,
P.
, 1999, “
Vibrations in Household Appliances With Rolling Element Bearings
,”
Proceedings of the International Seminar on Modal Analysis
,
Katholieke Universiteit Leuven
, Vol.
3
, pp.
1537
1544
.
27.
Tiwari
,
M.
, 2000, “
Effect of Radial Internal Clearance of a Ball Bearing on the Dynamics of a Balanced Horizontal Rotor
,”
J. Sound Vib.
,
238
(
5
), pp.
723
756
.
28.
Tiwari
,
M.
, 2000, “
Dynamic Response of an Unbalanced Rotor Supported on Ball Bearings
,”
J. Sound Vib.
,
238
(
5
), pp.
757
779
.
29.
Prenger
,
N.
, 2003, “
Modeling the Dynamics of Rolling Element Bearings Using ADAMS
,” M.S. thesis, Purdue University, West Lafayette, IN.
30.
Stacke
,
L.
,
Fritzson
,
D.
, and
Nordling
P.
, 1999, “
BEAST—A Rolling Bearing Simulation Tool
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dyn.
,
213
(
2
), pp.
63
71
.
31.
Ting
J.
, 1992, “
A Robust Algorithm for Ellipse-Based Discrete Element Modelling of Granular Materials
,”
Comput. Geotechnics
,
13
(
3
), pp.
175
186
.
32.
Ting
,
J.
,
Khwaja
,
M.
, and
Meachum
,
L.
, 1993, “
An Ellipse-Based Discrete Element Model for Granular Materials
,”
J. Numer. Anal. Meth. Geomech.
,
17
(
9
), pp.
603
623
.
33.
Matuttis
,
H. G.
,
Luding
,
S.
, and
Herrmann
,
H. J.
, 2000, “
Discrete Element Simulations of Dense Packings and Heaps Made of Spherical and Non-Spherical Particles
,”
Powder Technol.
,
109
(
1–3
), pp.
278
292
.
34.
Gupta
,
P. K.
, 1975, “
Generalized Dynamic Simulation of Skid in Ball Bearings
,”
J. Aircraft
,
12
, pp.
260
265
.
35.
Hamrock
,
B.
,
Schmid
,
S.
, and
Jacobson
,
B.
, 2004,
Fundamentals of Fluid Film Lubrication
,
Marcel Dekker
,
New York
.
36.
Kragelskii
,
I. V.
, 1965,
Friction and Wear
,
Butterworth
,
London
.
37.
Gupta
,
P. K.
, 1984,
Advanced Dynamics of Rolling Elements
,
Springer-Verlag
,
New York
.
38.
Gupta
,
P. K.
, 1974, “
Transient Ball Motion and Skid in Ball Bearings
,”
J. Lubr. Technol.
,
97
, pp.
261
269
.
39.
Craig
,
R.
, and
Bampton
,
M.
, 1968, “
Coupling of Substructures for Dynamic Analysis
,”
AIAA J.
,
6
(
7
), p.
1313
1319
.
40.
Adiletta
,
G.
,
Guido
,
A.
, and
Rossi
,
C.
, 1997, “
Nonlinear Dynamics of a Rigid Unbalanced Rotor in Journal Bearings. Part I: Theoretical Analysis
,”
Nonlinear Dyn.
,
2
, pp.
57
87
.
41.
Changqing
,
B.
, and
Qingyu
,
X.
, 2006, “
Dynamic Model of Ball Bearings With Internal Clearance and Waviness
,”
J. Sound Vibr.
,
294
, pp.
23
48
.
42.
Leblanc
,
A.
,
Nelias
,
D.
, and
Defaye
,
C.
, 2009, “
Nonlinear Dynamic Analysis of Cylindrical Roller Bearing With Flexible Rings
,”
J. Sound Vibr.
,
325
(
1-2
), p.
145
160
.
43.
Lieblein
,
J.
, and
Zelen
,
M.
, 1956, “
Statistical Investigation of the Fatigue Life of Deep-Groove Ball Bearings
,”
J. Res. Natl. Bur. Stand.
,
57
(
5
), pp.
273
316
.http://nvl.nist.gov/pub/nistpubs/jres/057/5/cnt057-5.htmhttp://nvl.nist.gov/pub/nistpubs/jres/057/5/cnt057-5.htm
44.
Hagiu
,
G.
, and
Gafitanu
,
M.
, 1994, “
Preload-Service Life Correlation for Ball Bearings on Machine Tool Main Spindles
,”
Wear
,
172
(
1
), pp.
79
83
.
45.
Crawford
,
T.
, 1970, “
The Experimental Determination of Ball Bearing Cage Stress
,”
Wear
,
16
(
1–2
), pp.
43
52
.
46.
Hinton
,
W.
, 1970, “
An Investigation Into the Causes of Ball Bearing Failures in Types P2 and P3 Engine-Driven Generators
,”
Wear
,
16
(
1–2
), pp.
3
42
.
You do not currently have access to this content.