This paper aims to develop an applicable nonlinear control technique for aeroengines. An approximate nonlinear model is presented and a rational identification procedure is given. Exact input-output feedback linearization can be easily performed on this model. The controller derived can approximately linearize the plant such that the close-loop system exhibits linear input-output dynamics locally. Modeling and controlling are exemplified and validated by a small turbofan engine. Simulation results illustrate that the modeling accuracy is good and linear close-loop system dynamics are achieved.

1.
Mu
,
J.
,
Rees
,
D.
, and
Liu
,
G. P.
, 2005, “
Advanced Controller Design for Aircraft Gas Turbine Engines
,”
Control Eng. Pract.
0967-0661,
13
(
8
), pp.
1001
1015
.
2.
Balas
,
G. J.
, 2002, “
Linear, Parameter-Varying Control and Its Application to a Turbofan Engine
,”
Int. J. Robust Nonlinear Control
1049-8923,
12
(
9
), pp.
763
796
.
3.
Frederick
,
D. K.
,
Garg
,
S.
, and
Adibhatla
,
S.
, 2000, “
Turbofan Engine Control Design Using Robust Multivariable Control Technologies
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
8
(
6
), pp.
961
970
.
4.
Garg
,
S.
, 1996, “
A Simplified Scheme for Scheduling Multivariable Controllers and Its Application to a Turbofan Engine
,”
ASME International Gas Turbine Institute Expo
, Birmingham, UK, Jun.
5.
Gilbert
,
W.
,
Henrion
,
D.
,
Bernussou
,
J.
, and
Boyer
,
D.
, 2010, “
Polynomial LPV Synthesis Applied to Turbofan Engines
,”
Control Eng. Pract.
0967-0661,
18
(
9
), pp.
1077
1083
.
6.
Harefors
,
M.
, 1997, “
Application of H∞ Robust Control to the RM12 Jet Engine
,”
Control Eng. Pract.
0967-0661,
5
(
9
), pp.
1189
1201
.
7.
Leith
,
D. J.
, and
Leithead
,
W. E.
, 2000, “
Survey of Gain-Scheduling Analysis and Design
,”
Int. J. Control
0020-7179,
73
(
11
), pp.
1001
1025
.
8.
Rugh
,
W. J.
, 1991, “
Analytical Framework for Gain Scheduling
,”
IEEE Control Syst. Mag.
0272-1708,
11
, pp.
79
84
.
9.
Shamma
,
J. S.
, 1988, “
Analysis and Design of Gain Scheduled Control
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
10.
Gahinet
,
P.
,
Apkarian
,
P.
, and
Chilali
,
M.
, 1996, “
Affine Parameter-Dependent Lyapunov Function and Real Parametric Uncertainty
,”
IEEE Trans. Autom. Control
0018-9286,
41
(
3
), pp.
436
442
.
11.
Wu
,
F.
, 1995, “
Control of Linear Parameter Varying Systems
,” Ph.D. thesis, University of California, Berkeley, Berkeley, CA.
12.
Bruzelius
,
F.
, 2002, “
LPV-Based Gain Scheduling: An H∞
-LMI Approach,” Ph.D. thesis, Chalmers University of Technology, Göteborg.
13.
Apkarian
,
P.
,
Gahinet
,
P.
, and
Becker
,
G.
, 1995, “
Self-Scheduled H∞ Control of Linear Parameter-Varying Systems: A Design Example
,”
Automatica
0005-1098,
31
(
9
), pp.
1251
1261
.
14.
Wu
,
F.
,
Packard
,
A.
, and
Balas
,
G.
, 2002, “
Systematic Gain-Scheduling Control Design: A Missile Autopilot Example
,”
Asian J. Control
,
4
(
3
), pp.
341
347
.
15.
Rosa
,
P.
,
Silvestre
,
C.
,
Cabecinhas
,
D.
, and
Cunha
,
R.
, 2007, “
Autolanding Controller for a Fixed Wing Unmanned Air Vehicle
,” AIAA Paper No. 2007-6770.
16.
Bruzelius
,
F.
,
Pettersson
,
S.
, and
Breitholtz
,
C.
, 2004, “
Linear Parameter-Varying Descriptions of Nonlinear Systems
,”
Proceedings of the American Control Conference
, Boston, MA, pp.
1374
1379
.
17.
Reberga
,
L.
,
Henrion
,
D.
,
Bernussou
,
J.
, and
Vary
,
F.
, 2005, “
LPV Modeling of a Turbofan Engine
,”
16th IFAC World Congress
, pp.
3
8
.
18.
Wu
,
F.
, and
Prajna
,
S.
, 2004, “
A New Solution Approach to Polynomial LPV System Analysis and Synthesis
,”
Proceedings of the American Control Conference
, Boston, MA, pp.
1362
1367
.
19.
Isidori
,
A.
, 1989,
Nonlinear Control Systems: An Introduction
,
Springer-Verlag
,
New York
.
20.
Guardabassi
,
G. O.
, and
Savaresi
,
S. M.
, 2001, “
Approximate Linearization via Feedback—An Overview
,”
Automatica
0005-1098,
37
(
1
), pp.
1
15
.
21.
Wang
,
J.
, and
Rugh
,
W.
, 1987, “
Feedback Linearization Families for Nonlinear Systems
,”
IEEE Trans. Autom. Control
0018-9286,
32
(
10
), pp.
935
940
.
22.
Baumann
,
W. T.
, and
Rugh
,
W. J.
, 1986, “
Feedback Control of Nonlinear Systems by Extended Linearization
,”
IEEE Trans. Autom. Control
0018-9286,
31
(
1
), pp.
40
46
.
23.
Tsourdos
,
A.
,
Blumel
,
A. L.
, and
White
,
B. A.
, 1999, “
Flight Control Design for a Missile: An Approximate Feedback Linearization Approach
,”
Proceedings of the Seventh Mediterranean Conference on Control and Automation
, Haifa, Israel, pp.
593
602
.
24.
Wang
,
J.
, and
Sundararajan
,
N.
, 1995, “
A Nonlinear Flight Controller Design for Aircraft
,”
Control Eng. Pract.
0967-0661,
3
(
6
), pp.
813
825
.
25.
Wang
,
J.
, and
Sundararajan
,
N.
, 1996, “
Extended Nonlinear Flight Controller Design for Aircraft
,”
Automatica
0005-1098,
32
(
8
), pp.
1187
1193
.
26.
Devaud
,
E.
,
Siguerdidjane
,
H.
, and
Font
,
S.
, 2000, “
Some Control Strategies for a High-Angle-of-Attack Missile Autopilot
,”
Control Eng. Pract.
0967-0661,
8
(
8
), pp.
885
892
.
27.
The Math Works, Inc.
, 2004,
SIMULINK: User’s Guide
, Natick, MA.
28.
Kerr
,
L. J.
,
Nemec
,
T. S.
, and
Gallops
,
G. W.
, 1992, “
Real-Time Estimation of Gas Turbine Engine Damage Using a Control-Based Kalman Filter Algorithm
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
114
(
2
), pp.
187
195
.
You do not currently have access to this content.