This paper discusses the gas turbine performance enhancement approach that has gained a lot of momentum in recent years in which modified Brayton cycles are used with humidification or water/steam injection, termed “wet cycles,” or with fuel cells, obtaining “hybrid cycles.” The investigated high performance cycles include intercooled steam-injected gas turbine cycle, recuperated water injection cycle, humidified air turbine cycle, and cascaded humidified advanced turbine cycle, Brayton cycle with high temperature fuel cells (molten carbonate fuel cells or solid oxide fuel cells), and their combinations with the modified Brayton cycles. Most of these systems, with a few exceptions, have not yet become commercially available as more development work is required. The results presented show that the cycle efficiency achievable with the aforementioned high performance systems can be comparable or better than a combined cycle system, a currently commercially available power generation system having maximum cycle efficiency. The main emphasis of this paper is to provide a detailed parametric thermodynamic cycle analysis, using uniform design parameters and assumptions, of the above mentioned cycles and discuss their comparative performance including advantages and limitations. The performance of these cycles is also compared with the already developed and commercially available gas turbines without water/steam injection features, called “dry cycles.” In addition, a brief review of the available literature of the identified high performance complex gas turbine cycles is also included in this paper.

1.
Gas Turbine World 2004–05 GTW Handbook
, Vol.
24
,
Pequot
,
Fairfield, CT
.
2.
Bhargava
,
R. K.
,
Bianchi
,
M.
,
De Pascale
,
A.
,
Negri di Montenegro
,
G.
, and
Peretto
,
A.
, 2007, “
Gas Turbine Based Power Cycles—A State-of-the-Art Review
,”
Proceedings of the International Conference on Power Engineering-2007 (ICOPE 2007)
, Hangzhou, China.
3.
McDonald
,
C. F.
, 1999, “
Emergence of Recuperated Gas Turbines for Power Generation
,” ASME Paper No. 99-GT-67.
4.
Takeya
,
K.
,
Oteki
,
Y.
, and
Yasui
,
H.
, 1984, “
Current Status of Advanced Reheat Gas Turbine AGTJ-100A (Part 3) Experimental Results of Shop Tests
,” ASME Paper No. 84-GT-57.
5.
Eckardt
,
D.
, and
Rufli
,
P.
, 2001, “
Advanced Gas Turbine Technology—ABB/BBC Historical Firsts
,” ASME Paper No. 2001-GT-0395.
6.
McCarthy
,
S. J.
, and
Scott
,
I.
, 2002, “
The WR-21 Intercooled Recuperated Gas Turbine Engine-Operation and Integration Into the Royal Navy Type 45 Destroyer Power System
,” ASME Paper No. 2002-GT-30266.
7.
Reale
,
M. J.
, 2004, “
New High Efficiency Simple Cycle Gas Turbine—GE’s LMS100™
,” GER-4222A (06/04).
8.
Bianchi
,
M.
,
Negri di Montenegro
,
G.
,
Peretto
,
A.
, and
Spina
,
P. R.
, 2005, “
A Feasibility Study of Inverted Brayton Cycle for Gas Turbine Repowering
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
127
, pp.
599
605
.
9.
Wilson
,
D. G.
, 1984,
The Design of High-Efficiency Turbomachinery and Gas Turbines
,
MIT
,
Cambridge, MA
, Chap. 3.
10.
Horlock
,
J. H.
, 2005,
Advanced Gas Turbine Cycles
,
Elsevier Science
,
Oxford, UK
.
11.
Boyce
,
M. P.
, 1987,
Gas Turbine Engineering Handbook
,
Gulf
,
Houston, TX
, Chap. 2.
12.
Jonsson
,
M.
, and
Yan
,
J.
, 2005, “
Humidified Gas Turbines—A Review of Proposed and Implemented Cycles
,”
Energy
0360-5442,
30
, pp.
1013
1078
.
13.
Larson
,
E. D.
, and
Williams
,
R. H.
, 1987, “
Steam Injected Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
109
, pp.
55
63
.
14.
Cheng
,
D. Y.
, and
Nelson
,
A. L. C.
, 2002, “
The Chronological Development of the Cheng Cycle Steam Injected Gas Turbine During the Past 25 Years
,” ASME Paper No. GT-2002-30119.
15.
Rice
,
I. G.
, 1995, “
Steam-Injected Gas Turbine Analysis: Steam Rates
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
117
, pp.
347
353
.
16.
El-Masri
,
M. A.
, 1988, “
A Modified, High-Efficiency, Recuperated Gas-Turbine Cycle
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
110
, pp.
233
42
.
17.
Chiesa
,
P.
,
Lozza
,
G.
,
Macchi
,
E.
, and
Consonni
,
S.
, 1995, “
An Assessment of the Thermodynamic Performance of Mixed Gas-Steam Cycles: Part B—Water-Injected and HAT Cycles
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
117
, pp.
499
508
.
18.
Macchi
,
E.
,
Bombarda
,
P.
,
Chiesa
,
P.
,
Consonni
,
S.
, and
Lozza
,
G.
, 1991, “
Gas-Turbine-Based Advanced Cycles for Power Generation Part B: Performance Analysis of Selected Configurations
,” 91-Yokohama-IGTC-72.
19.
Macchi
,
E.
,
Consonni
,
S.
,
Lozza
,
G.
, and
Chiesa
,
P.
, 1995, “
An Assessment of the Thermodynamic Performance of Mixed Gas-Steam Cycles: Part A—Intercooled and Steam-Injected Cycles
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
117
, pp.
489
498
.
20.
Rao
,
A. D.
, and
Joiner
,
J. R.
, 1990, “
A Technical and Economic Evaluation of the Humid Air Turbine Cycle
,”
Seventh Annual International Pittsburgh Coal Conference
, Sept. 10–14.
21.
Stecco
,
S. S.
,
Desideri
,
U.
,
Facchini
,
B.
, and
Bettagli
,
N.
, 1993, “
The Humid Air Cycle: Some Thermodynamic Considerations
,” ASME Paper No. 93-GT-77.
22.
Lazzaretto
,
A.
, and
Segato
,
F.
, 2001, “
Thermodynamic Optimization of the HAT Cycle Plant Structure—Part I: Optimization of the “Basic Plant Configuration”
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
123
, pp.
1
7
.
23.
Nakhamkin
,
M.
,
Swensen
,
E.
,
Wilson
,
L. M.
,
Gaul
,
G.
, and
Polsky
,
M.
, 1996, “
The Cascaded Humidified Advanced Turbine (CHAT)
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
118
(
3
), pp.
565
571
.
24.
Nakhamkin
,
M.
,
Swensen
,
E. C.
,
Scheibel
,
J. R.
, and
Cohn
A.
, 1998, “
CHAT Technology: An Alternative Approach to Achieve Advanced Turbine Systems Efficiencies With Present Combustion Turbine Technology
,” ASME Paper No. 98-GT-143.
25.
Facchini
,
B.
,
Ferrara
,
G.
, and
Masi
,
G.
, 1998, “
A Parametric Study of CHAT Cycle Performance: Thermodynamic and Design Features
,” ASME Paper No. 98-GT-166.
26.
Veyo
,
S.
,
Shockling
,
L.
,
Dederer
,
J.
,
Giller
,
J.
, and
Lundberg
,
W.
, 2000, “
Tubular Solid Oxide Fuel Cell/Gas Turbine Hybrid Cycle Power Systems–Status
,” ASME Paper No. 2000-GT-550.
27.
Campanari
,
S.
, and
Macchi
,
E.
, 1998, “
Thermodynamic Analysis of Advanced Power Cycles Based Upon Solid Oxide Fuel Cells, Gas Turbines and Rankine Bottoming Cycles
,” ASME Paper No. 98-GT-585.
28.
Lundberg
,
W. L.
,
Veyo
,
S. E.
, and
Moeckel
,
M. D.
, 2001, “
A High Efficiency SOFC Hybrid Power System Using the Mercury 50 ATS Gas Turbine
,” ASME Paper No. 2001-GT-521.
29.
Shockling
,
L.
,
Veyo
,
S.
,
Litzinger
,
K.
, and
Lundberg
,
W.
, 2005, “
Comparative Evaluation of SOFC/Gas Turbine Hybrid System Options
,” ASME Paper No. GT2005-68909.
30.
Ghezel-Ayagh
,
H.
,
Sanderson
R.
, and
Walzak
,
J.
, 2005, “
Development of Hybrid Power Systems Based on Direct Fuel Cell/Turbine Cycle
,” ASME Paper No. GT2005-69119.
31.
Marcenaro
,
B.
,
Ferrari
,
E.
, and
Torazza
,
A.
, 2004, “
Series 2TW MCFC Power Plant, First of a Kind
,”
Fuel Cell 2004 International Conference and Exhibition
, Lucerne, Switzerland.
32.
Campanari
,
S.
, 2000, “
Full-load and Part-Load Performance Prediction for Integrated SOFC and Microturbine Systems
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
122
, pp.
239
246
.
33.
Agnew
,
G.
,
Berenyi
,
S.
,
Bozzolo
,
M.
, and
Moritz
,
R.
, 2005, “
The Design and Integration of the Rolls-Royce Fuel Cell Systems 1MW SOFC
,” ASME Paper No. GT2005-69122.
34.
Campanari
,
S.
, 2004, “
Parametric Analysis of Small Scale Recuperated SOFC/Gas Turbine Cycles
,” ASME Paper No. 2004-GT-53933.
35.
Campanari
,
S.
,
Iora
,
P.
,
Macchi
,
E.
, and
Silva
,
P.
, 2007, “
Thermodynamic Analysis of Integrated MCFC/Gas Turbine Cycles for Multi-MW Scale Power Generation
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
4
, pp.
308
316
.
36.
Ghezel-Ayagh
,
H.
,
Daly
,
J. M.
, and
Wang
,
Z. H.
, 2003, “
Advances in Direct Fuel Cell/Gas Turbine Power Plants
,” ASME Paper No. GT2003-38941.
37.
Azegami
,
O.
, 2006, “
MCFC/MGT Hybrid Generation System
,”
R&D Rev Toyota CRDL
,
41
(
1
), pp.
36
43
. 1550-624X
38.
Consonni
,
S.
, and
Macchi
,
E.
, 1998, “
Gas Turbine Cycles Performance Evaluation
,”
Proceedings of the ASME COGEN-TURBO Meeting
, Montreaux, Switzerland.
39.
El-Masri
,
M. A.
, 1986, “
On Thermodynamics of Gas-Turbine Cycles: Part 2—A Model for Expansion in Cooled Turbines
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
108
, pp.
151
159
.
40.
Bettocchi
,
R.
,
Cantore
,
G.
,
Negri di Montenegro
,
G.
, and
Moro
,
D.
, 1991, “
Optimum Performance Evaluation in Multistage Intercooled Compression Gas Turbines
,”
Proceedings of the ASME COGEN—TURBO IGTI
, Vol.
6
, pp.
235
242
.
41.
Consonni
,
S.
,
Lozza
,
G.
,
Macchi
,
E.
,
Chiesa
,
P.
, and
Bombarda
,
P.
, 1991, “
Gas-Turbine-Based Advanced Cycles for Power Generation Part A: Calculation Model
,”
Proceedings of the International Gas Turbine Conference-Yokohama 1991
, Vol.
III
, pp.
201
210
.
42.
Chiesa
,
P.
, and
Macchi
,
E.
, 2004, “
A Thermodynamic Analysis of Different Options to Break 60% Electric Efficiency in Combined Cycle Power Plants
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
126
(
4
), pp.
770
785
.
43.
Yadav
,
R.
,
Kumar
,
P.
,
Dwivedi
,
P. K.
, and
Saraswati
,
S.
, 2004, “
Thermodynamic Evaluation of Humidified Air Turbine (HAT) Cycles
,” ASME Paper No. GT2004-54098.
44.
2002, “
Humid Air Turbine Cycle Technology Development Program
,” Pratt & Whitney Advanced Engine Programs, Technical Progress Report No. TW-0077.
45.
Wolk
,
R.
,
Nakhamkin
,
M.
, and
Goldstein
,
H. N.
, 2002, “
Evaluation of Cascaded Humidified Advanced Turbine (CHAT) Cycles for Natural Gas and Syngas
,”
USDOE Turbine Power Systems Conference
.
You do not currently have access to this content.