Following their recent experiences in the search of methods for reducing the nitric oxide emissions from a micro-gas turbine, the authors discuss in this paper the results of the combustion simulation under different conditions induced by the activation of an exhaust recirculation system. The theoretical approach starts with a matching analysis of the exhaust gas recirculation equipped microturbine, and then proceeds with the computational fluid dynamics analysis of the combustor. Different combustion models are compared in order to validate the method for NOx reduction by the point of view of a correct development of the chemically reacting process.

1.
Cameretti
,
M. C.
,
Reale
,
F.
, and
Tuccillo
,
R.
, 2006, “
Cycle Optimization and Combustion Analysis in A Low-NOx Micro-Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
129
, pp.
994
1003
.
2.
Cameretti
,
M. C.
,
Reale
,
F.
, and
Tuccillo
,
R.
, 2007, “
NOx Suppression From a Micro-Gas Turbine Approaching the Mild-Combustion Regime
,” ASME Paper No. GT2007-27091.
3.
Camporeale
,
S. M.
, and
Fortunato
,
B.
, 2007, “
Thermodynamic Analysis of Semi-Closed Gas Turbine Combined Cycles With High Temperature Diluted Air Combustion
,” ASME Paper No. GT2007-28330.
4.
Levy
,
Y.
,
Sherbaum
,
V.
, and
Erenburg
,
V.
, 2007, “
The Role of the Recirculating Gases at the Mild Combustion Regime Formation
,” ASME Paper No. GT2007-27369.
5.
Duwig
,
C.
,
Szasz
,
R. Z.
, and
Fuchs
,
L.
, 2006, “
Modelling of Flameless Combustion Using Large Eddy Simulation
,” ASME Paper No. GT2006-90063.
6.
Levy
,
Y.
,
Sherbaum
,
V.
, and
Rao
,
G. A.
, 2007, “
Preliminary Analysis of a New Methodology for Flameless Combustion in Gas Turbine Combustors
,” ASME Paper No. GT2007-27766.
7.
Li
,
G.
,
Gutmark
,
E. J.
,
Overman
,
N.
, and
Cornwell
,
M.
, 2006, “
Experimental Study of a Flameless Gas Turbine Combustor
,” ASME Paper No. GT2006-91051.
8.
Dagaut
,
P.
, and
Cong
,
T. L.
, 2007, “
Kinetics of Natural Gas, Natural Gas/Syngas Mixtures Oxidation and Effect of Burnt Gas Recirculation: Experimental and Detailed Modeling
,” ASME Paper No. GT2007-27146.
9.
Schütz
,
H.
,
Lückerath
,
R.
,
Kretschmer
,
T.
,
Noll
,
B.
, and
Aigner
,
M.
, 2006, “
Analysis of the Pollutant Formation in the FLOX® Combustion
,” ASME Paper No. GT2006-91041.
10.
Brueckner-Kalb
,
J. R.
,
Napravnik
,
C.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
, 2007, “
Development of a Fuel-Air Premixer for a Sub-ppm Nox Burner
,” ASME Paper No. GT2007-27779.
11.
Bozza
,
F.
,
Cameretti
,
M. C.
, and
Tuccillo
,
R.
, 2005, “
Adapting the Micro-Gas Turbine Operation to Variable Thermal and Electrical Requirements
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
127
, pp.
514
524
.
12.
Peters
,
N.
, 2000,
Turbulent Combustion
,
Cambridge University Press
,
Cambridge, England
.
13.
Tuncer
,
O.
,
Acharya
,
S.
, and
Uhm
,
J.
, 2007, “
Dynamics, NOx and Flashback Characteristics of Confined Pre-Mixed Hydrogen Enriched Methane Flames
,” ASME Paper No. GT2007-28158.
14.
Ibrahim
,
O.
,
Zimmermann
,
P.
,
Hirsch
,
C.
,
Sattelmayer
,
T.
,
Gerhard
,
B.
, and
Steinbach
,
C.
, 2004, “
A Microturbine Operating With Variable Heat Output
,” ASME Paper No. GT-2004-53011.
15.
Cameretti
,
M. C.
, and
Tuccillo
,
R.
, 2005. “
A CFD Based Off-Design Study of Micro-Gas Turbines Combustors
,” ASME Paper No. GT-2005-68924.
16.
Tuccillo
,
R.
, and
Cameretti
,
M. C.
, 2005, “
Combustion and Combustors for MGT Applications
,” Paper No. RTO-MP-AVT-131.
17.
Parente
,
J.
,
Mori
,
G.
,
Anisimov
,
V.
, and
Croce
,
G.
, 2004, “
Micro Gas Turbine Combustion Chamber Design and CFD Analysis
,” ASME Paper No. GT2004-54247.
18.
McBride
,
B. J.
, and
Gordon
,
S.
, 1994, “
Computer Program for Calculation of Complex Equilibrium Composition and Applications
,” NASA Technical Report No. RP 1311.
19.
Lagerström
,
G.
, and
Xie
,
M.
, 2002, “
High Performance & Cost Effective Recuperator for Micro-Gas Turbines
,” ASME Paper No. GT-2002-30402.
20.
Magnussen
,
B. F.
, and
Hjertager
,
B. H.
, 1977, “
On Mathematical Modeling of Turbulent Combustion With Special Emphasis on Soot Formation
,”
16th Symposium on Combustion
,
The Combustion Institute
,
Pittsburgh
.
21.
Nicol
,
G. D.
,
Malte
,
P. C.
,
Hamer
,
A. J.
,
Roby
,
R. J.
, and
Steele
,
R. C.
, 1998,“
A Five-Step Global Methane Oxidation—NO Formation Mechanism for Lean Premixed Gas Turbine Combustion
,” ASME Paper No. 98-GT-185.
22.
Novosselov
,
I. V.
, and
Malte
,
P. C.
, 2007, “
Development and Application of an Eight-Step Global Mechanism for CFD and CRN Simulations of Lean-Premixed Combustors
,” ASME Paper No. GT2007-27990.
23.
Zeldovich
,
Y. B.
,
Sadovnikov
,
P. Y.
, and
Frank-Kamenetskik
,
D. A.
, 1947,
Oxidation of Nitrogen in Combustion
,
Academy of Science of SR, Institute of Chemical Physics
,
Moscow, Leningrad
.
24.
Russo
,
C.
,
Parente
,
J.
,
Mori
,
G.
, and
Anissimov
,
V. V.
, 2007, “
Micro Gas Turbine Combustor Emissions Evaluation Using the Chemical Reactor Modelling Approach
,” ASME Paper No. GT2007-27687.
25.
Miller
,
J. A.
, and
Bowman
,
C. T.
, 1989, “
Mechanism and Modelling of Nitrogen Chemistry in Combustion
,”
Prog. Energy Combust. Sci.
0360-1285,
15
, pp.
287
338
.
26.
Cavaliere
,
A.
, and
de Joannon
,
M.
, 2004, “
Mild Combustion
,”
Prog. Energy Combust. Sci.
0360-1285,
30
(
4
), pp.
329
366
.
You do not currently have access to this content.