In order to explore the influence of hot streak temperature ratio on the low pressure stage of a vaneless counter-rotating turbine, three-dimensional multiblade row unsteady Navier–Stokes simulations have been performed. The predicted results show that hot streaks are not mixed out by the time they reach the exit of the high pressure turbine rotor. The separation of colder and hotter fluids is observed at the inlet of the low pressure turbine rotor. After making interactions with the inner-extending and outer-extending shock waves in the high pressure turbine rotor, the hotter fluid migrates toward the pressure surface of the low pressure turbine rotor, and most of the colder fluid migrates to the suction surface of the low pressure turbine rotor. The migrating characteristics of the hot streaks are dominated by the secondary flow in the low pressure turbine rotor. The results also indicate that the secondary flow intensifies in the low pressure turbine rotor when the hot streak temperature ratio is increased. The effects of the hot streak temperature ratio on the relative flow angle at the inlet of the low pressure turbine rotor are very remarkable. The isentropic efficiency of the vaneless counter-rotating turbine decreases as the hot streak temperature ratio is increased.

1.
Keith
,
B. D.
,
Basu
,
D. K.
, and
Stevens
,
C.
, 2000, “
Aerodynamic Test Results of Controlled Pressure Ratio Engine (COPE) Dual Spool Air Turbine Rotating Rig
,” ASME Paper No. 2000-GT-0632.
2.
Haldeman
,
C. W.
,
Dunn
,
M. G.
,
Abhari
,
R. S.
,
Johnson
,
P. D.
, and
Montesdeoca
,
X. A.
, 2000, “
Experimental and Computational Investigation of the Time-Averaged and Time-Resolved Pressure Loading on a Vaneless Counter-Rotating Turbine
,” ASME Paper No. 2000-GT-0445.
3.
Wintucky
,
W. T.
, and
Stewart
,
W. L.
, 1958, “
Analysis of Two-Stage Counter-Rotating Turbine Efficiencies in Terms of Work and Speed Requirements
,” NACA RM E57L05.
4.
Louis
,
J. F.
, 1985, “
Axial Flow Contra-Rotating Turbines
,” ASME Paper No. 85-GT-218.
5.
Zhao
,
Q. J.
,
Wang
,
H. S.
,
Zhao
,
X. L.
, and
Xu
,
J. Z.
, 2006, “
Numerical Analysis of 3-D Unsteady Flow in a Vaneless Counter-Rotating Turbine
,”
J. Eng. Thermophys.
,
27
(
1
), pp.
35
38
.
6.
Zhao
,
Q. J.
,
Wang
,
H. S.
,
Zhao
,
X. L.
, and
Xu
,
J. Z.
, 2006, “
Three-Dimensional Numerical Investigation of Vaneless Counter-Rotating Turbine
,”
J. Propul. Technol.
,
27
(
2
), pp.
114
118
.
7.
Lakshminarayana
,
B.
, and
Horlock
,
J. H.
, 1973, “
Generalized Expressions for Secondary Vorticity Using Intrinsic Coordinates
,”
J. Fluid Mech.
0022-1120,
59
, pp.
97
115
.
8.
Butler
,
T. L.
,
Sharma
,
O. P.
,
Joslyn
,
H. D.
, and
Dring
,
R. P.
, 1989, “
Redistribution of an Inlet Temperature Distortion in an Axial Flow Turbine Stage
,”
J. Propul. Power
0748-4658,
5
(
1
), pp.
64
71
.
9.
Rai
,
M. M.
, and
Dring
,
R. P.
, 1990, “
Navier–Stokes Analyses of the Redistribution of Inlet Temperature Distortions in a Turbine
,”
J. Propul. Power
0748-4658
6
(
3
), pp.
276
282
.
10.
Roback
,
R. J.
, and
Dring
,
R. P.
, 1992, “
Hot Streaks and Phantom Cooling in a Turbine Rotor Passage: Part 1—Separate Effects
,” ASME Paper No. 92-GT-75.
11.
Dorney
,
D. J.
, 1996, “
Numerical Investigation of Hot Streak Temperature Ratio Scaling Effects
,” AIAA Paper No. 96-0619.
12.
Sharma
,
O. P.
,
Pichett
,
G. F.
, and
Ni
,
R. H.
, 1990, “
Assessment of Unsteady Flows in Turbines
,” ASME Paper No. 90-GT-150.
13.
Gundy-Burlet
,
K. L.
, and
Dorney
,
D. J.
, 1996, “
Three-Dimensional Simulations of Hot Streak Clocking in a 1‐1∕2 Stage Turbine
,” AIAA Paper No. 96-2791.
14.
Shang
,
T.
, 1995, “
Influence of Inlet Temperature Distortion on Turbine Heat Transfer
,” Philosophy Doctor’s thesis, MIT.
15.
Schwab
,
J. R.
,
Stabe
,
R. G.
, and
Whitney
,
W. J.
, 1983, “
Analytical and Experimental Study of Flow Through an Axial Turbine Stage With a Nonuniform Inlet Radial Temperature Profile
,” NASA-TM-83431.
16.
Stabe
,
R. G.
,
Whitney
,
W. J.
, and
Moffitt
,
T. P.
, 1994, “
Performance af a High-Work Low-Aspect Ratio Turbine Tested With a Realistic Inlet Radial Temperature Profile
,” AIAA Paper No. 84-1161.
17.
Guenette
,
G. R.
, 1985, “
A Fully Scaled Short Duration Turbine Experiment
,” Sc.D. thesis, MIT.
18.
Dorney
,
D. J.
,
Davis
,
R. L.
, and
Sharma
,
O. P.
, 1991, “
Two-Dimensional Inlet Temperature Profile Attenuation in a Turbine Stage
,” ASME Paper No. 91-GT-406.
19.
Krouthen
,
B.
, and
Giles
,
M. B.
, 1988, “
Numerical Investigation of Hot Streaks in Turbines
,” AIAA Paper No. 88-3015.
20.
Takahashi
,
R.
, and
Ni
,
R. H.
, 1990, “
Unsteady Euler Analysis of the Redistribution of an Inlet Temperature Distortion in a Turbine
,” AIAA Paper No. 90-2262.
21.
Takahashi
,
R.
, and
Ni
,
R. H.
, 1991, “
Unsteady Hot Streak Simulation Through a 1‐1∕2 Stage Turbine
,” AIAA Paper No. 91-3382.
22.
Weigand
,
B.
, and
Harasgama
,
S. P.
, 1994, “
Computations of a Film Cooled Turbine Rotor Blade With Non-Uniform Inlet Temperature Distribution Using a Three-Dimensional Viscous Procedure
,” ASME Paper No. 94-GT-15.
23.
Dorney
,
D. J.
,
Sondak
,
D. L.
, and
Cizmas
,
P. G. A.
, 1999, “
Effects of Hot Streak∕Airfoil Ratio in a High-Subsonic Single-Stage Turbine
,” AIAA Paper No. 99-2384.
24.
2005, FINE TURBO User Manual 6-2-9, NUMECA International.
25.
Jameson
,
A.
, 1991, “
Time Dependent Calculations Using Multigrid With Applications to Unsteady Flows Past Airfoils and Wings
,” AIAA Paper No. 91-1596.
26.
Rai
,
M. M.
, 1989, “
Three-Dimension Navier–Stokes Simulations of Turbine Rotor-Stator Interaction, Part I—Methodology
,”
J. Propul. Power
0748-4658,
5
(
3
), pp.
305
311
.
27.
Spalart
,
P.
, and
Allmaras
,
S.
, 1992, “
A One-Equation Turbulence Model for Aerodynamic Flows
,” AIAA Paper No. 92-0439.
28.
Zhao
,
Q. J.
,
Wang
,
H. S.
,
Zhao
,
X. L.
, and
Xu
,
J. Z.
, 2005, “
Numerical Investigation of 3-D Unsteady Hot Streak Migration in a Vaneless Counter-Rotating Turbine
,” CSET-2005-052003.
29.
Zhao
,
Q. J.
,
Wang
,
H. S.
,
Zhao
,
X. L.
, and
Xu
,
J. Z.
, 2007, “
Numerical Investigation on the Influence of Hot Streak Temperature Ratio in a High-Pressure Stage of Vaneless Counter-Rotating Turbine
,”
Int. J. Rotating Mach.
1023-621X,
2007
, pp.
1
14
.
You do not currently have access to this content.