A fundamental study has been performed on the upstream flame propagation of a turbulent kerosene flame, stabilized in a confined stagnation flow at atmospheric pressure. Besides temperature and equivalence ratio, mixture properties and fluid dynamic parameters have been varied. The flashback phenomenon is discussed in terms of critical mean velocities and additionally based on detailed LDV data at the outlet of the premixing duct. The largest critical velocities uc for flashback are found for the “perfectly” premixed case and equivalence ratios close to stoichiometric, which is in accordance with the theory on laminar flame propagation. In the case of a homogeneous mixture, flashback is determined by the velocity distribution at the outlet of the premixing section. In the undisturbed pipe flow the flame propagates through the wall boundary layer. The data for this case are compared with the theory of side-wall quenching in terms of a critical Peclet number and critical velocity gradients at the wall. Both are deduced from the experimental data. Reducing the velocity on the axis forces the flame to propagate through the center at a velocity predicted by correlations on turbulent flame velocity.

1.
Tacina, R. R., 1990, “Low NOx Potential of Gas Turbine Engines,” Technical Report AIAA Paper 90-0550.
2.
Stolarski, R. S., Baughcum, S. L., Brune, W. H., Douglass, A. R., Fahey, D. W., Friedl, R. R., Liu, S. C., Plumb, R. A., Poole, L. R., and Wesoky, H. L., 1995, “The 1995 Scientific Assessment of the Atmospheric Effects of Stratosperic Aircraft,” Technical Report NASA RP 1381.
3.
Lefebvre, A. H., 1983, “Gas Turbine Combustion,” Energy, Combustion, and Environment, McGraw-Hill, New York.
4.
Harris, M. E., Grumer, J., von Elbe, G., and Lewis, B., 1949, “Burning Velocities, Quenching and Stability Data on Nonturbulent Flames of Methane and Propane With Oxygen and Nitrogen,” Third Symposium on Combustion, Flame and Explosion Phenomena, The Combustion Institute, Pittsburgh, PA, pp. 80–88.
5.
Putnam, A. A., and Jensen, R. A., 1949, “Application of Dimensionless Numbers to Flash-Back and Other Combustion Phenomena,” Third Symposium on Combustion, Flame and Explosion Phenomena, The Combustion Institute, Pittsburgh, PA, pp. 89–98.
6.
Wohl, K., Kapp, N. M., and Gazley, C., 1949, “The Stability of Open Flames,” Third Symposium on Combustion, Flame and Explosion Phenomena, The Combustion Institute, Pittsburgh, PA, pp. 3–21.
7.
Khitrin, L. N., Moin, P. B., Smirnov, D. B., and Shevchuk, V. U., 1965, “Peculiarities of Laminar- and Turbulent-Flame Flashback,” Tenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 1285–1291.
8.
Bollinger
,
L. E.
, and
Edse
,
R.
,
1956
, “
Effect of Burner-Tip Temperature on Flash Back of Turbulent Hydrogen-Oxygen Flames
,”
Ind. Eng. Chem.
,
48
(
4
), pp.
802
807
.
9.
Grumer
,
J.
, and
Harris
,
M. E.
,
1954
, “
Temperature Dependence of Stability Limits of Burner Flames
,”
Ind. Eng. Chem.
,
46
(
11
), pp.
2424
2430
.
10.
Grumer
,
J.
,
1958
, “
Flashback and Blowoff Limits of Unpiloted Turbulent Flames
,”
Jet Propul.
,
28
, pp.
756
759
.
11.
Lewis
,
B.
, and
von Elbe
,
G.
,
1943
, “
Stability and Structure of Burner Flames
,”
J. Chem. Phys.
,
11
, pp.
75
97
.
12.
Plee
,
S. L.
, and
Mellor
,
A. M.
,
1978
, “
Review of Flashback Reported in Prevaporizing/Premixing Combustors
,”
Combust. Flame
,
32
, pp.
193
203
.
13.
Coats
,
C. M.
,
1980
, “
Comment on Review of Flashback Reported in Prevaporizing/Premixing Combustors
,”
Combust. Flame
,
37
(
3
), pp.
331
333
.
14.
Ghoniem
,
A. F.
,
1986
, “
Effect of Large Scale Structures on Turbulent Flame Propagation
,”
Combust. Flame
,
64
, pp.
321
336
.
15.
Keller
,
J. O.
,
Vaneveld
,
L.
,
Korschelt
,
D.
,
Hubbard
,
G. L.
,
Ghoniem
,
A. F.
, and
Oppenheim
,
A. K.
,
1982
, “
Mechanism of Instabilities in Turbulent Combustion Leading to Flashback
,”
AIAA J.
,
20
(
2
), pp.
254
262
.
16.
Vaneveld
,
L.
,
Hom
,
K.
, and
Oppenheim
,
A. K.
,
1984
, “
Secondary Effects in Combustion Instabilities Leading to Flashback
,”
AIAA J.
,
22
, pp.
81
82
.
17.
Marek, C. J., Papathakos, L. C., and Verbulecz, P. W., 1977, “Preliminary Studies of Auto-ignition and Flashback in a Premixing-Prevaporizing Flame Tube Using Jet-A Fuel at Lean Equivalence Ratios,” Technical Report NASA TM X-3526, Lewis Research Center, NASA, Cleveland, OH.
18.
Proctor, M. P., T’ien, J. S., and Anderson, D. N., 1985, “Flame Flashback in a Premixed Dump Combustor,” Technical Report AIAA-85-0145.
19.
Ekstedt, E. E., and Fear, J. S., 1987, “NASA/GE Advanced Low Emissions Combustor Program,” Technical Report AIAA-87-2035.
20.
Scha¨fer, O., Koch, R., and Wittig, S., 2000, “Measurement of the Periodic Flow of an Enclosed Lean Premixed Prevaporized Stagnation Flame,” 10th Int. Symp. on Application of Laser Techniques to Fluid Mechanics, July, 10–13, Lisbon.
21.
Leuckel, W., Lauer, G., Hirsch, C., and Habisreuther, P., 1994, “Mathematische Modellierung der Wechselwirkung Von Turbulenz und Reaktion unter Den in Gasturbinenbrennkammern Vorliegenden Bedingunger,” Technical Report BMFT, Teilver-bundprojekt Turboflam, Vorhaben 3.1.3.4.
22.
Lewis, B., and von Elbe, G., 1987, Combustion, Flames and Explosion of Gases, 3rd Ed., Academic Press, San Diego, CA.
23.
Poinsot
,
T. J.
,
Haworth
,
D. C.
, and
Bruneaux
,
G.
,
1993
, “
Direct Simulation and Modeling of Flame-Wall Interaction for Premixed Turbulent Combustion
,”
Combust. Flame
,
95
, pp.
118
132
.
24.
Lee
,
S. T.
, and
T’ien
,
J. S.
,
1982
, “
A Numerical Analysis of Flame Flashback in a Premixed Laminar System
,”
Combust. Flame
,
48
, pp.
273
285
.
25.
Lewis, B., and von Elbe, G., 1961, Combustion, Flames, and Explosions of Gases, 2nd Ed., Academic Press, San Diego, CA.
26.
Liu, Y., 1991, “Untersuchung zur Stationa¨ren Ausbreitung turbulenter Vormischflammen,” Ph.D. thesis, Universita¨t Karlsruhe, Fak. f. Chemieingenieurwesen.
You do not currently have access to this content.