A simple analytical model is derived for the prediction of time-dependent deformation and damage response of metal matrix composites under fiber direction loading. The model can be used in conjunction with a number of viscoplastic constitutive models to describe the matrix material behavior. Damage in the form of progressive fiber fractures is incorporated using a mechanistic approach. The criterion for fiber fractures can be based on statistical information on fiber strength. When used in conjunction with a prescribed failure condition for a composite, the model provides a means for predicting composite life under general thermomechanical load conditions. Based on comparison of results with detailed finite element analyses and with laboratory test data, it appears that the simple model provides reasonably accurate predictions.

1.
Santhosh
 
U.
, and
Ahmad
 
J.
,
1992
, “
Metal Matrix Composites Under Biaxial Loading
,”
Constitutive Behavior of Metal Matrix Composites
, B. S. Majumdar, G. M. Newaz, and S. Mall, eds., MD-Vol.
40
, ASME, New York, pp.
53
66
.
2.
Kroupa
 
J. L.
, and
Neu
 
R. W.
,
1994
, “
The Non-Isothermal Viscoplastic Behavior of a Titanium-Matrix Composite
,”
Composite Engineering
, Vol.
4
, No.
9
, pp.
965
977
.
3.
Sherwood
 
J. A.
,
Quimby
 
H. M.
, and
Doore
 
R. J.
,
1992
, “
Damage Modeling in Fiber Reinforced Composites
,”
Fracture and Damage
, A. Nagar, ed., AD-Vol.
27
, ASME, New York, pp.
59
63
.
4.
Ahmad, J., Santhosh, U., and Haq, I.-U., 1993, “An Analysis of Time Dependent Deformation of Metal Matrix Composites,” Proc. of The American Society for Composites-Eighth Technical Conference, Technomic Publishing Co., Lancaster, PA, pp. 715–723.
5.
Santhosh
 
U.
, and
Ahmad
 
J.
,
1992
, “
Nonlinear Micromechanics Analysis Prediction of the Behavior of Titanium Alloy Matrix Composites
,”
Fracture and Damage
, A. Nagar, ed., AD-Vol.
27
, ASME, New York, pp.
65
76
.
6.
Neu
 
R. W.
, and
Roman
 
I.
,
1994
, “
Acoustic Emission Monitoring of Damage in Metal Matrix Composites Subjected to Thermomechanical Fatigue
,”
Composite Science and Technology
, Vol.
52
, pp.
1
8
.
7.
Curtin
 
W. A.
,
1991
, “
Theory Of Mechanical Properties of Ceramic Matrix Composites
,”
J. American Ceramic Society
, Vol.
74
, p.
2837
2837
.
8.
Bodner
 
S. R.
, and
Partom
 
Y.
,
1975
, “
Constitutive Equations for Elastic-Viscoplastic Strain Hardening Materials
,”
ASME Journal of Applied Mechanics
, Vol.
42
, pp.
385
389
.
9.
Neu
 
R. W.
,
1993
, “
Non-Isothermal Parameters for the Bodner-Partom Model
,”
Material Parameter Estimation for Modern Constitutive Equations
, L. A. Bertram, S. B. Brown, and A. D. Freed, eds., MD-Vol. 43/AMD-Vol.
168
, ASME, New York, pp.
211
226
.
10.
Forringer
 
M. A.
,
Roberstson
 
D. D.
, and
Mall
 
S.
,
1997
, “
A Micromechanical Based Approach to Fatigue Life Modeling of Titanium Matrix Composites
,”
Composites
, Part B, Vol.
28
, No. 5–6, pp.
507
521
.
11.
Majumdar, B. S., and Newaz, G. M., 1995, “In-Phase TMF of SCS-6/Ti-15-3 MMC,” 1995 HITEMP Proceedings, Vol. 2, NASA Report No. 10178, pp. 22.1–22.12.
12.
Santhosh, U., and Ahmad, J., 1992, “Metal Matrix Composite Response Under Biaxial Loading,” Constitutive Behavior of High Temperature Composites, B. S. Majumdar, G. M. Newaz, and S. Mall, eds., MD-Vol. 40, ASME, New York.
13.
Nicholas
 
T.
, and
Ahmad
 
J.
,
1994
, “
Modeling Fiber Breakage in Metal Matrix Composites
,”
Composites Science and Technology Journal
, Vol.
52
, pp.
29
38
.
14.
Ashbaugh, N. E., 1994, “Mechanical Behavior of High Temperature Structural Materials,” WL-TR-95-4003, Materials Directorate, Wright Laboratory, Air Force Material Command, Wright-Patterson AFB, OH 45433-7734.
This content is only available via PDF.
You do not currently have access to this content.