Abstract

We study the entrance length in eccentric annular geometries, where the axes of the inner and outer pipes forming the annulus are offset from each other. Such geometries are considered relevant for several industrial applications, such as drilling of wells for hydrocarbon production or geothermal energy recovery, as well as biomedical research involving annular vessels. Previous studies have shown that eccentricity increases the entrance length in annular geometries, and this has been attributed to azimuthal redistribution of fluid between the wide and narrow sides of the annulus. The present computational study aims to increase the understanding of entrance lengths in eccentric annuli for laminar flow with Reynolds numbers spanning the range from the creep limit and up to intermediate laminar values, below the regime of annular gap instabilities. We find that the entrance lengths in eccentric annuli generally increase for narrower annular gaps (higher aspect ratios). Moreover, the entrance lengths in the annuli with higher aspect ratios are also more sensitive to the degree of eccentricity compared to wider annuli (lower aspect ratios). We report empirical correlations for the dimensionless entrance length using the same form as earlier studies (Le=[C0n+(C1Re)n]1/n). We find that eccentricity, which breaks the axial symmetry of the annulus and causes azimuthal flow in the entrance region, impacts the value of the exponent n, which has been assigned the value of 1.6 in previous studies of axisymmetric conduits.

References

1.
Kelessidis
,
V. C.
,
Maglione
,
R.
, and
Mitchell
,
R. F.
,
2011
, “
Drilling Hydraulics
,”
Fundamentals of Drilling Engineering
,
R. F.
Mitchell
, and
S. Z.
Miska
, eds.,
Society of Petroleum Engineers
, Richardson, TX, pp.
179
310
.
2.
Batra
,
R.
, and
Jena
,
B.
,
1990
, “
Entrance Region Flow of Blood in Concentric Annulus
,”
Int. J. Eng. Sci.
,
28
(
5
), pp.
407
419
.10.1016/0020-7225(90)90006-5
3.
Choueiri
,
G. H.
, and
Tavoularis
,
S.
,
2014
, “
Experimental Investigation of Flow Development and Gap Vortex Street in an Eccentric Annular Channel. Part 1. Overview of the Flow Structure
,”
J. Fluid Mech.
,
752
, pp.
521
542
.10.1017/jfm.2014.343
4.
Velusamy
,
K.
, and
Garg
,
V. K.
,
1994
, “
Entrance Flow in Eccentric Annular Ducts
,”
Int. J. Numer. Methods Fluids
,
19
(
6
), pp.
493
512
.10.1002/fld.1650190604
5.
White
,
F. M.
,
1991
,
Viscous Fluid Flow
, 2nd ed.,
McGraw-Hill
, New York.
6.
Osiptsov
,
A. A.
, and
Asmolov
,
E. S.
,
2008
, “
Asymptotic Model of the Inertial Migration of Particles in a Dilute Suspension Flow Through the Entry Region of a Channel
,”
Phys. Fluids
,
20
(
12
), p.
123301
.10.1063/1.3032909
7.
Joshi
,
Y.
, and
Vinoth
,
B. R.
,
2018
, “
Entry Lengths of Laminar Pipe and Channel Flows
,”
ASME J. Fluids Eng.
,
140
(
6
), p.
061203
.10.1115/1.4038668
8.
Durst
,
F.
,
Ray
,
S.
,
Ünsal
,
B.
, and
Bayoumi
,
O. A.
,
2005
, “
The Development Lengths of Laminar Pipe and Channel Flows
,”
ASME J. Fluids Eng.
,
127
(
6
), pp.
1154
1160
.10.1115/1.2063088
9.
Poole
,
R. J.
,
2010
, “
Development-Length Requirements for Fully Developed Laminar Flow in Concentric Annuli
,”
ASME J. Fluids Eng.
,
132
(
6
), p.
064501
.10.1115/1.4001694
10.
Poole
,
R. J.
, and
Ridley
,
B. S.
,
2007
, “
Development-Length Requirements for Fully Developed Laminar Pipe Flow of Inelastic Non-Newtonian Liquids
,”
ASME J. Fluids Eng.
,
129
(
10
), pp.
1281
1287
.10.1115/1.2776969
11.
Poole
,
R. J.
, and
Chhabra
,
R. P.
,
2010
, “
Development Length Requirements for Fully Developed Laminar Pipe Flow of Yield Stress Fluids
,”
ASME J. Fluids Eng.
,
132
(
3
), p.
034501
.10.1115/1.4001079
12.
Heyda
,
J. F.
,
1959
, “
A Green's Function Solution for the Case of Laminar Incompressible Flow Between Non-Concentric Circular Cylinders
,”
J. Franklin Inst.
,
267
(
1
), pp.
25
34
.10.1016/0016-0032(59)90034-1
13.
Snyder
,
W. T.
, and
Goldstein
,
G. A.
,
1965
, “
An Analysis of Fully Developed Laminar Flow in an Eccentric Annulus
,”
AIChE J.
,
11
(
3
), pp.
462
467
.10.1002/aic.690110319
14.
Feldman
,
E. E.
,
Hornbeck
,
R. W.
, and
Osterle
,
J. F.
,
1982
, “
A Numerical Solution of Laminar Developing Flow in Eccentric Annular Ducts
,”
Int. J. Heat Mass Transfer
,
25
(
2
), pp.
231
241
.10.1016/0017-9310(82)90009-6
15.
Lamarche-Gagnon
,
M.-E.
, and
Tavoularis
,
S.
,
2021
, “
Further Experiments and Analysis on Flow Instability in Eccentric Annular Channels
,”
J. Fluid Mech.
,
915
, p.
A34
.10.1017/jfm.2021.81
16.
Mewis
,
J.
, and
Wagner
,
N. J.
,
2012
,
Colloidal Suspension Rheology
,
Cambridge University Press
, Cambridge, UK.
17.
Walton
,
I. C.
, and
Bittleston
,
S. H.
,
1991
, “
The Axial Flow of a Bingham Plastic in a Narrow Eccentric Annulus
,”
J. Fluid Mech.
,
222
, pp.
39
60
.10.1017/S002211209100099X
18.
Larson
,
R. G.
, and
Wei
,
Y.
,
2019
, “
A Review of Thixotropy and Its Rheological Modeling
,”
J. Rheol.
,
63
(
3
), pp.
477
501
.10.1122/1.5055031
19.
Corvisier
,
P.
,
Nouar
,
C.
,
Devienne
,
R.
, and
Lebouché
,
M.
,
2001
, “
Development of a Thixotropic Fluid Flow in a Pipe
,”
Exp. Fluids
,
31
(
5
), pp.
579
587
.10.1007/s003480100336
20.
Barnes
,
H. A.
,
1995
, “
A Review of the Slip (Wall Depletion) of Polymer Solutions, Emulsions and Particle Suspensions in Viscometers: Its Cause, Character, and Cure
,”
J. Non-Newtonian Fluid Mech.
,
56
(
3
), pp.
221
251
.10.1016/0377-0257(94)01282-M
21.
Shah
,
R.
, and
London
,
A.
,
1978
, “
Chapter III—Dimensionless Groups and Generalized Solutions
,”
Laminar Flow Forced Convection in Ducts
,
R.
Shah
, and
A.
London
, eds.,
Academic Press
, Cambridge, MA, pp.
37
60
.
22.
Churchill
,
S. W.
, and
Usagi
,
R.
,
1972
, “
A General Expression for the Correlation of Rates of Transfer and Other Phenomena
,”
AIChE J.
,
18
(
6
), pp.
1121
1128
.10.1002/aic.690180606
23.
Barker
,
J. W.
,
Powers
,
J.
, and
Mitchell
,
R. F.
,
2011
, “
Casing Design
,”
Fundamentals of Drilling Engineering
,
R. F.
Mitchell
, and
S. Z.
Miska
, eds.,
Society of Petroleum Engineers
, Richardson, TX, pp.
385
448
.
24.
Bird
,
R. B.
,
Armstrong
,
R. C.
, and
Hassager
,
O.
,
1987
,
Dynamics of Polymeric Liquids
, 2nd ed., Vol. 1,
Wiley
, Hoboken, NJ.
You do not currently have access to this content.