Abstract

To enhance heat dissipation with boiling flows, simulations of bubble merging need to be examined from a fundamental perspective with a focus on the mechanisms near the interface. The current study develops a model for 3D multiphase boiling flows using the volume-of-fluid (VOF) interface tracking method by customizing ansys-fluent. The software is customized to incorporate sharp interface modeling and localized adaptive mesh refinement (AMR) for improved interface tracking. The simulation focuses on the heat transfer and fluid transport mechanisms during bubble merging in water at atmospheric conditions. The developed approach can capture 3D bubble growth and merging dynamics for both two and three bubbles cases at 5 K wall superheat. Detailed visualization and quantification of the heat transfer mechanisms near the interface are explored for the three bubble merger case. The influence region, quantified by the wall shear stress, is 3.1 times the bubble diameter at departure. Peaks in the local heat transfer coefficient (HTC) due to trapped liquid when bubbles are merging were detected. An average heat transfer coefficient of 13,150 W/m2K was observed near departure. Total computational time required to achieve bubble departure is quantified; the simulation with adaptive mesh refinement of two bubbles required 86 h, and three bubbles required 103 h on a 64-core machine.

References

1.
Ni
,
S.
,
Pan
,
C.
,
Hibiki
,
T.
, and
Zhao
,
J.
,
2024
, “
Applications of Nucleate Boiling in Renewable Energy and Thermal Management and Recent Advances in Modeling—A Review
,”
Energy
,
289
, p.
129962
.10.1016/j.energy.2023.129962
2.
Rashidi
,
S.
,
Hormozi
,
F.
, and
Sarafraz
,
M. M.
,
2021
, “
Fundamental and Subphenomena of Boiling Heat Transfer
,”
J. Therm. Anal. Calorim.
,
143
(
3
), pp.
1815
1832
.10.1007/s10973-020-09468-3
3.
Zhang
,
H.
,
Mudawar
,
I.
, and
Hasan
,
M. M.
,
2009
, “
Application of Flow Boiling for Thermal Management of Electronics in Microgravity and Reduced-Gravity Space Systems
,”
IEEE Trans. Compon. Packag. Technol.
,
32
(
2
), pp.
466
477
.10.1109/TCAPT.2008.2004413
4.
Zhang
,
T.
,
Li
,
J.
,
Yan
,
Y.
, and
Fan
,
Y.
,
2024
, “
Large Eddy Simulation of a Turbulent Polydisperse Spray Flow: A Comparative Study of Subgrid Scale Models and Droplet Injection Models
,”
ASME J. Fluids Eng.
,
146
(
7
), p.
071103
.10.1115/1.4064760
5.
Pal
,
D.
, and
Perez-Raya
,
I.
,
2024
, “
Simulating Film Boiling With Sharp Interface and Direct Calculation of Mass Transfer to Investigate the Hydrodynamic and Thermal Transport Phenomena Near the Interface
,”
Int. J. Heat Mass Transfer
,
235
, p.
126179
.10.1016/j.ijheatmasstransfer.2024.126179
6.
Kim
,
M.
, and
Kim
,
S. J.
,
2020
, “
A Mechanistic Model for Nucleate Pool Boiling Including the Effect of Bubble Coalescence on Area Fractions
,”
Int. J. Heat Mass Transfer
,
163
, p.
120453
.10.1016/j.ijheatmasstransfer.2020.120453
7.
Sadaghiani
,
A. K.
,
Altay
,
R.
,
Noh
,
H.
,
Kwak
,
H. J.
,
Şendur
,
K.
,
Mısırlıoğlu
,
B.
,
Park
,
H. S.
, and
Koşar
,
A.
,
2020
, “
Effects of Bubble Coalescence on Pool Boiling Heat Transfer and Critical Heat Flux—A Parametric Study Based on Artificial Cavity Geometry and Surface Wettability
,”
Int. J. Heat Mass Transfer
,
147
, p.
118952
.10.1016/j.ijheatmasstransfer.2019.118952
8.
Lombaard
,
L.
,
Moghimi
,
M. A.
,
Valluri
,
P.
, and
Meyer
,
J. P.
,
2021
, “
Interaction Between Multiple Bubbles in Microchannel Flow Boiling and the Effects on Heat Transfer
,”
Int. Commun. Heat Mass Transfer
,
129
, p.
105703
.10.1016/j.icheatmasstransfer.2021.105703
9.
Gong
,
S.
, and
Cheng
,
P.
,
2017
, “
Direct Numerical Simulations of Pool Boiling Curves Including Heater's Thermal Responses and the Effect of Vapor Phase's Thermal Conductivity
,”
Int. Commun. Heat Mass Transfer
,
87
, pp.
61
71
.10.1016/j.icheatmasstransfer.2017.06.023
10.
Kandlikar
,
S. G.
,
2022
, “
Microscale to Macroscale—Extending Microscale Enhancement Techniques to Large-Scale Boiling Equipment
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
144
(
5
), p.
050802
.10.1115/1.4053679
11.
Kharangate
,
C. R.
, and
Mudawar
,
I.
,
2017
, “
Review of Computational Studies on Boiling and Condensation
,”
Int. J. Heat Mass Transfer
,
108
, pp.
1164
1196
.10.1016/j.ijheatmasstransfer.2016.12.065
12.
Jiang
,
H.
,
Liu
,
Y.
, and
Chu
,
H.
,
2023
, “
A Review of Numerical Investigation on Pool Boiling
,”
J. Therm. Anal. Calorim.
,
148
(
17
), pp.
8697
8745
.10.1007/s10973-023-12292-0
13.
James
,
W. O.
, III
, and
Perez-Raya
,
I.
,
2024
, “
Three-Dimensional Simulations of Nucleate Boiling With Sharp Interface Volume of Fluid and Localized Adaptive Mesh Refinement in Ansys-Fluent
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
146
(
5
), p.
051601
.10.1115/1.4064459
14.
Giustini
,
G.
,
Walker
,
S. P.
,
Sato
,
Y.
, and
Niceno
,
B.
,
2017
, “
Computational Fluid Dynamics Analysis of the Transient Cooling of the Boiling Surface at Bubble Departure
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
139
(
9
), p.
091501
.10.1115/1.4036572
15.
Sharif
,
S. A.
,
Ho
,
M. K. M.
,
Timchenko
,
V.
, and
Yeoh
,
G. H.
,
2022
, “
Three-Dimensional Simulation of Vapor Bubble Growth in Superheated Water Due to the Convective Action by an Interface Tracking Method
,”
ASME J. Fluids Eng.
,
144
(
2
), p.
021401
.10.1115/1.4051810
16.
Das
,
S. P.
, and
Bhattacharya
,
A.
,
2024
, “
Numerical Investigations on Enhancement of Pool Boiling Heat Transfer on a Mixed Wettability Surface Employing Lattice Boltzmann Method
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
146
(
1
), p.
011601
.10.1115/1.4063647
17.
Hong
,
H.
,
Ku
,
J. H.
,
Kim
,
J. S.
, and
Cho
,
H. K.
,
2024
, “
Boiling Heat Flux Partitioning Model With Bubble Tracking Method Considering Bubble Merger and Stochastic Characteristics
,”
Int. J. Heat Mass Transfer
,
226
, p.
125443
.10.1016/j.ijheatmasstransfer.2024.125443
18.
Saha
,
A.
, and
Das
,
A. K.
,
2021
, “
Numerical Study of Boiling Heat Transfer Around Horizontal and Inclined Cylinders
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
11
), p.
111602
.10.1115/1.4052153
19.
Han
,
C.-Y.
, and
Griffith
,
P.
,
1965
, “
The Mechanism of Heat Transfer in Nucleate Pool Boiling—Part I: Bubble Initiaton, Growth and Departure
,”
Int. J. Heat Mass Transfer
,
8
(
6
), pp.
887
904
.10.1016/0017-9310(65)90073-6
20.
Sato
,
Y.
, and
Niceno
,
B.
,
2015
, “
A Depletable Micro-Layer Model for Nucleate Pool Boiling
,”
J. Comput. Phys.
,
300
, pp.
20
52
.10.1016/j.jcp.2015.07.046
21.
Mukherjee
,
A.
, and
Kandlikar
,
S. G.
,
2007
, “
Numerical Study of Single Bubbles With Dynamic Contact Angle During Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer
,
50
(
1–2
), pp.
127
138
.10.1016/j.ijheatmasstransfer.2006.06.037
22.
Iyer
,
S.
,
Kumar
,
A.
,
Coventry
,
J.
, and
Lipiński
,
W.
,
2023
, “
Modelling of Bubble Growth and Detachment in Nucleate Pool Boiling
,”
Int. J. Therm. Sci.
,
185
, p.
108041
.10.1016/j.ijthermalsci.2022.108041
23.
Dhir
,
V. K.
,
Warrier
,
G. R.
, and
Aktinol
,
E.
,
2013
, “
Numerical Simulation of Pool Boiling: A Review
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
135
(
6
), p.
061502
.10.1115/1.4023576
24.
Son
,
G.
,
Ramanujapu
,
N.
, and
Dhir
,
V. K.
,
2002
, “
Numerical Simulation of Bubble Merger Process on a Single Nucleation Site During Pool Nucleate Boiling
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
124
(
1
), pp.
51
62
.10.1115/1.1420713
25.
Zhang
,
Z.
,
Liu
,
W.
, and
Free
,
M. L.
,
2020
, “
Phase-Field Modeling and Simulation of Gas Bubble Coalescence and Detachment in a Gas-Liquid Two-Phase Electrochemical System
,”
J. Electrochem. Soc.
,
167
(
1
), p.
013532
.10.1149/2.0322001JES
26.
Liu
,
Q.
, and
Palm
,
B.
,
2016
, “
Numerical Study of Bubbles Rising and Merging During Convective Boiling in Micro-Channels
,”
Appl. Therm. Eng.
,
99
, pp.
1141
1151
.10.1016/j.applthermaleng.2016.01.116
27.
Hardt
,
S.
, and
Wondra
,
F.
,
2008
, “
Evaporation Model for Interfacial Flows Based on a Continuum-Field Representation of the Source Terms
,”
J. Comput. Phys.
,
227
(
11
), pp.
5871
5895
.10.1016/j.jcp.2008.02.020
28.
Li
,
M.
,
Moortgat
,
J.
, and
Bolotnov
,
I. A.
,
2020
, “
Nucleate Boiling Simulation Using Interface Tracking Method
,”
Nucl. Eng. Des.
,
369
, p.
110813
.10.1016/j.nucengdes.2020.110813
29.
Bi
,
J.
,
Christopher
,
D. M.
,
Zhao
,
D.
,
Xu
,
J.
, and
Huang
,
Y.
,
2019
, “
Numerical Study of Bubble Growth and Merger Characteristics During Nucleate Boiling
,”
Prog. Nucl. Energy
,
112
, pp.
7
19
.10.1016/j.pnucene.2018.12.001
30.
Carey
,
V. P.
,
2020
, “
Liquid-Vapor Phase-Change Phenomena
,”
An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment
,
CRC Press
,
Boca Raton FL
.10.1201/9780429082221
31.
Sun
,
T.
,
2019
, “
A Numerical Study on Dynamics Behaviors of Multi Bubbles Merger During Nucleate Boiling by Lattice Boltzmann Method
,”
Int. J. Multiphase Flow
,
118
, pp.
128
140
.10.1016/j.ijmultiphaseflow.2019.04.011
32.
Dong
,
Z.
,
Li
,
W.
, and
Song
,
Y.
,
2010
, “
A Numerical Investigation of Bubble Growth On and Departure From a Superheated Wall by Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4908
4916
.10.1016/j.ijheatmasstransfer.2010.06.001
33.
Mukherjee
,
A.
, and
Dhir
,
V. K.
,
2004
, “
Study of Lateral Merger of Vapor Bubbles During Nucleate Pool Boiling
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
126
(
6
), pp.
1023
1039
.10.1115/1.1834614
34.
Yuan
,
J.
,
Ye
,
X.
, and
Shan
,
Y.
,
2021
, “
Modeling of the Bubble Dynamics and Heat Flux Variations During Lateral Coalescence of Bubbles in Nucleate Pool Boiling
,”
Int. J. Multiphase Flow
,
142
, p.
103701
.10.1016/j.ijmultiphaseflow.2021.103701
35.
Gong
,
S.
, and
Cheng
,
P.
,
2015
, “
Numerical Simulation of Pool Boiling Heat Transfer on Smooth Surfaces With Mixed Wettability by Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
80
, pp.
206
216
.10.1016/j.ijheatmasstransfer.2014.08.092
36.
Ling
,
K.
,
Son
,
G.
,
Sun
,
D.-L.
, and
Tao
,
W.-Q.
,
2015
, “
Three Dimensional Numerical Simulation on Bubble Growth and Merger in Microchannel Boiling Flow
,”
Int. J. Therm. Sci.
,
98
, pp.
135
147
.10.1016/j.ijthermalsci.2015.06.019
37.
Rana
,
B. K.
,
Das
,
A. K.
, and
Das
,
P. K.
,
2017
, “
Towards the Understanding of Bubble-Bubble Interaction upon Formation at Submerged Orifices: A Numerical Approach
,”
Chem. Eng. Sci.
,
161
, pp.
316
328
.10.1016/j.ces.2016.12.049
38.
Sato
,
Y.
, and
Niceno
,
B.
,
2017
, “
Nucleate Pool Boiling Simulations Using the Interface Tracking Method: Boiling Regime From Discrete Bubble to Vapor Mushroom Region
,”
Int. J. Heat Mass Transfer
,
105
, pp.
505
524
.10.1016/j.ijheatmasstransfer.2016.10.018
39.
Li
,
C.
,
Shen
,
Z.
,
Pan
,
Q.
,
Duan
,
J.
, and
Wang
,
W.
,
2024
, “
Study on the Effect of Multiple Bubbles Hydrodynamics on Pool Boiling Heat Transfer
,”
Int. J. Multiphase Flow
,
174
, p.
104792
.10.1016/j.ijmultiphaseflow.2024.104792
40.
El Mellas
,
I.
,
Samkhaniani
,
N.
,
Falsetti
,
C.
,
Stroh
,
A.
,
Icardi
,
M.
, and
Magnini
,
M.
,
2024
, “
Numerical Investigation of Bubble Dynamics and Flow Boiling Heat Transfer in Cylindrical Micro-Pin-Fin Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
228
, p.
125620
.10.1016/j.ijheatmasstransfer.2024.125620
41.
Chen
,
Y.-J.
,
Ling
,
K.
,
Ding
,
H.
,
Wang
,
Y.
,
Jin
,
S.-Q.
, and
Tao
,
W.-Q.
,
2022
, “
3-D Numerical Study of Subcooled Flow Boiling in a Horizontal Rectangular Mini-Channel by VOSET
,”
Int. J. Heat Mass Transfer
,
183
, p.
122218
.10.1016/j.ijheatmasstransfer.2021.122218
42.
Sontheimer
,
H.
,
Kind
,
J.
,
Stephan
,
P.
, and
Gambaryan-Roisman
,
T.
,
2024
, “
Numerical Simulation of Drop Array Impingement onto a Superheated Wall
,”
16th Triennial International Conference on Liquid Atomization and Spray Systems, Shanghai (ICLASS)
, China, June 23–26, pp.
1
10
.10.26083/tuprints-00027601
43.
Kunkelmann
,
C.
, and
Stephan
,
P.
,
2009
, “
CFD Simulation of Boiling Flows Using the Volume-of-Fluid Method Within OpenFOAM
,”
Numer. Heat Transfer, Part A: Appl.
,
56
(
8
), pp.
631
646
.10.1080/10407780903423908
44.
Perez-Raya
,
I.
, and
Kandlikar
,
S. G.
,
2018
, “
Numerical Models to Simulate Heat and Mass Transfer at Sharp Interfaces in Nucleate Boiling
,”
Numer. Heat Transfer, Part A: Appl.
,
74
(
10
), pp.
1583
1610
.10.1080/10407782.2018.1543918
45.
Kays
,
W. M.
, and
Crawford
,
M. E.
,
1993
,
Convective Heat and Mass Transfer
,
McGraw-Hill
,
New York
.
46.
Son
,
G.
,
Dhir
,
V. K.
, and
Ramanujapu
,
N.
,
1999
, “
Dynamics and Heat Transfer Associated With a Single Bubble During Nucleate Boiling on a Horizontal Surface
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
121
(
3
), pp.
623
631
.10.1115/1.2826025
47.
Perez-Raya
,
I.
, and
Kandlikar
,
S. G.
,
2019
, “
Simulation of Nucleate Boiling With Interfacial Temperature Gradients and Sharp Interface
,”
ASME
Paper No. IMECE2018-87998.10.1115/IMECE2018-87998
48.
Perez-Raya
,
I.
, and
Kandlikar
,
S. G.
,
2018
, “
Discretization and Implementation of a Sharp Interface Model for Interfacial Heat and Mass Transfer During Bubble Growth
,”
Int. J. Heat Mass Transfer
,
116
, pp.
30
49
.10.1016/j.ijheatmasstransfer.2017.08.106
49.
Shipkowski
,
S. P.
, and
Perez-Raya
,
I.
,
2023
, “
Precise and Analytical Calculation of Interface Surface Area in Sharp Interfaces and Multiphase Modeling
,”
Int. J. Heat Mass Transfer
,
202
, p.
123683
.10.1016/j.ijheatmasstransfer.2022.123683
50.
Perez-Raya
,
I.
, and
Kandlikar
,
S. G.
,
2016
, “
Chapter Three—Evaporation on a Planar Interface—Numerical Simulation and Theoretical Analysis of Heat and Mass Transport Processes
,”
Advances in Heat Transfer
,
E. M.
Sparrow
,
J. P.
Abraham
,
J. M.
Gorman
,
T. F.
Irvine
, and
J. P.
Hartnett
, eds.,
Elsevier
,
Amsterdam, The Netherlands
, pp.
125
190
.
51.
Perez-Raya
,
I.
, and
Kandlikar
,
S. G.
,
2016
, “
Modeling of Evaporation Phenomenon Considering Liquid and Vapor Phase Conduction Effects: Stefan Problems
,”
ASME
Paper No. ICNMM2016-7968.10.1115/ICNMM2016-7968
52.
Siegel
,
R.
, and
Keshock
,
E. G.
,
1964
, “
Effects of Reduced Gravity on Nucleate Boiling Bubble Dynamics in Saturated Water
,”
AIChE J.
,
10
(
4
), pp.
509
517
.10.1002/aic.690100419
You do not currently have access to this content.